
Dissertation

Efficient Visual Navigation of
Hierarchically Structured Graphs

Marcus Raitner

February 9, 2006

Supervisor
Prof. Dr. Franz J. Brandenburg

Dissertation for the acquisition of the degree of a doctor in natural sciences
at the Faculty of Mathematics and Computer Science of the University of
Passau.

1st reviewer: Prof. Dr. Franz J. Brandenburg, University of Passau
2nd reviewer: Prof. Dr. Ulrik Brandes, University of Konstanz

Abstract

Visual navigation of hierarchically structured graphs is a technique for
interactively exploring large graphs that possess an additional hierar-

chical structure. This structure is expressed in form of a recursive clustering
of the nodes: in call graphs of telephone networks, for instance, the nodes
are identified with phone numbers; they are clustered recursively through
the implicit structure of the numbers, e. g., nodes with the same area code
belong to a cluster. In order to reduce the complexity and the size of the
graph, only those subgraphs that are currently needed are shown in detail,
while the others are collapsed, i. e., represented by meta nodes. In such
a graph view the subgraphs in the areas of interest are expanded furthest,
whereas those on the periphery are abstracted. As the areas of interest
change over time, clusters in a view need to be expanded or contracted.

First and foremost, there is need for an efficient data structure for this
graph view maintenance problem. Depending on the admissible modifications
of the graph and its hierarchical clustering, three variants have been dis-
cussed in the literature: in the static case, everything is fixed; in the dynamic
graph variant, only edges of the graph can be inserted and deleted; finally, in
the dynamic graph and tree variant the graph additionally is subject to node
insertions and deletions and the clustering may change through splitting
and merging of clusters. We introduce a new variant, dynamic leaves, which
is based on the dynamic graph variant, but additionally allows insertion
and deletion of graph nodes, i. e., leaves of the hierarchy.

So far efficient data structures were known only for the static and the dy-
namic graph variant, i. e., neither the nodes of the graph nor the clustering
could be modified. As this is unsatisfactory in an interactive editor for hier-
archically structured graphs, we first generalize the approach of Buchsbaum
et. al (Proc. 8th ESA, vol. 1879 of LNCS, pp. 120–131, 2000), in which graph
view maintenance is formulated as a special case of range searching over tree
cross products, to the new dynamic leaves variant. This generalization builds
on a novel technique of superimposing a search tree over an ordered list
maintenance structure. With an additional factor of roughly O(log n/log log n),
this is the first data structure for the problem of graph view maintenance
where the node set is dynamic.

v

Visualizing the expanding and contracting appropriately is the second
challenge. We propose a local update scheme for the algorithm of Sugiyama
and Misue (IEEE Trans. on Systems, Man, and Cybernetics 21 (1991) 876–
892) for drawing compound digraphs. The layered drawings that it pro-
duces have many applications ranging from biochemical pathways to UML
diagrams. Modifying the intermediate results of every step of the original
algorithm locally, the update scheme is more efficient than re-applying the
entire algorithm after expansion or contraction. As our experimental results
on randomly generated graphs show, the average time for updating the
drawing is around 50 % of the time for redrawing for dense graphs and be-
low 20 % for sparse graphs. Also, the performance gain is not at the expense
of quality as regards the area of the drawing, which increases only insignifi-
cantly, and the number of crossings, which is reduced. At the same time, the
locality of the updates preserves the user’s mental map of the graph: nodes
that are are not affected stay on the same level in the same relative order
and expanded edges take the same course as the corresponding contracted
edge; furthermore, expansion and contraction are visually inverse.

Finally, our new data structure and the update scheme are combined into
an interactive editor and viewer for compound (di-)graphs. A flexible and
extensible software architecture is introduced that lays the ground for fu-
ture research. It employs the well-known Model-View-Controller (MVC)
paradigm to separate the abstract data from its presentation. As a conse-
quence, the purely combinatorial parts, i. e., the compound (di-)graph and
its views, are reusable without the editor front-end. A proof-of-concept im-
plementation based on the proposed architecture shows its feasibility and
suitability.

vi

Contents

Abstract v

1 Introduction 1
1.1 Terminology . 11
1.2 Graph View Maintenance . 18

1.2.1 Problem Definition . 19
1.2.2 Previous Solutions . 20
1.2.3 Dynamic Tree Cross Products 23

1.3 Visual Navigation . 23
1.3.1 Drawing Ordinary Graphs 23
1.3.2 Drawing Hierarchically Structured Graphs 25
1.3.3 Dynamic Aspects of Graph Drawing 26
1.3.4 Dynamic Layered Drawings of Compound Digraphs 30

1.4 Interactive Editor and Viewer 31
1.4.1 Key Features . 32
1.4.2 Previous Solutions . 33

2 Dynamic Tree Cross Products 35
2.1 Tree Cross Products . 36
2.2 Naive Approach . 39
2.3 Static Trees . 39

2.3.1 The Two-Dimensional Case 40
2.3.2 Higher Dimensions . 46

2.4 Dynamization: Inserting and Deleting Leaves 48
2.4.1 The Two-Dimensional Case 48
2.4.2 Higher Dimensions . 57

2.5 Application to Graph View Maintenance 57
2.5.1 Modeling . 57
2.5.2 Complexity . 59
2.5.3 Comparison . 63

2.6 Summary . 65

vii

Contents

3 Visualization 67
3.1 Static Layered Drawings of Compound Digraphs 68

3.1.1 Step I: Hierarchization 69
3.1.2 Step II: Normalization 71
3.1.3 Step III: Crossing Reduction 72
3.1.4 Step IV: Metric Layout 75

3.2 Expansion . 80
3.2.1 Step I: Hierarchization 81
3.2.2 Step II: Normalization 84
3.2.3 Step III: Crossing Reduction 86
3.2.4 Step IV: Metric Layout 92

3.3 Contraction . 93
3.4 Experimental Results . 95
3.5 Summary . 105

4 Architecture 107
4.1 Design Goals . 108
4.2 High-Level Architecture . 110
4.3 Low-Level Architecture . 112

4.3.1 Model . 113
4.3.2 MVC-View . 117
4.3.3 Controller . 120

4.4 Use Cases . 122
4.4.1 Expansion . 122
4.4.2 Adding a Leaf . 125

4.5 Summary . 127

5 Conclusion 129
5.1 Results . 129
5.2 Open Problems and Future Work 130

Bibliography 142

List of Figures 145

List of Tables 147

Index 149

viii

1
Introduction

Over the last decades, information technology progressively pervaded
nearly all areas of everyday life. Nowadays, every phone call, every

item bought in a store, every credit card transaction, every bank transfer,
every visit of a web page, and every e-mail produces some sort of data.
In many companies, this leads to massive amounts of data, which need to
be analyzed in order to support management decisions, for instance. This
data often is of relational nature, i. e., it consists of links between elements of
certain sets: a phone call links two phone numbers, an item bought in a store
is linked with the customer, a credit card transaction or a bank transfer links
the two bank accounts, a web page is linked with the visitor’s IP address,
and an e-mail links the sender with the receiver. In other words, the data in
any of these examples can be interpreted as a graph.

In order to get an overview of such a graph and to identify its interesting
parts, a good visualization is extremely useful. In fact, the human brain can
analyze a (good) picture much faster than textual information.1 Just imagine
to sit in the New York Metro and the links would be given in textual form,
e. g., “line A connects W. 4th St. with Spring St.” instead of the usual map;
see Figure 1.1 for a clipping of it. It is, however, not visualizations per se
that are superior to other forms of representation. It all depends on the
quality of the drawing, which is, of course, a highly subjective measure and
thus is difficult to formalize in general. For specific problems like the New
York Metro map, some criteria of a good drawing are evident. Unnecessary

1Or, as the well-known proverb expresses it: “One picture is worth ten thousand words.”,
which, incidentally, often is wrongly attributed to Confucious or some other (ancient)
far-east philosopher, but actually has its source in a 1927 ad by Fred R. Barnard, National
Advertising Manager for the Street Railways Advertising Company; see (Hepting, 1999).

1

1 Introduction

N

DYKER
BEACH
PARK

Ferries: Port Liberté • Liberty Harbor

WESTCHESTER
THE BRONX

N
AS

SA
U

Q
U

EE
N

S

N
A

S
S

A
U

Q
U

E
E

N
S

QUEENS
BROOKLYN

J a m a i c a
B a y

E a s t R i v e r

H
a

r l e
m

R
i v e r

L
o

n
g

I
s

l
a

n
d

S

o
u

n d

H
u

d
s

o
n

R

i
v

e
r

Q33

M60

M60
M60
Q33
Q48

Q33

Q4
8

Q10

Q10

B15 Q10
B15

AIRTRAIN

AIRTRAIN

Q3

Q3

LIRR

Weehawken Ferry

(Port Imperial)

Hob
ok

en

 N
ew

po
rt

• C
ol

ga
te

 •

Har
bo

rs
id

e

Weehawken Ferry
(Lincoln Harbor)

Hunters Point
Ferry

Ferries: E34 S
t

H
unters P

oint

Ferries: H
ighland

s • A
tlantic H

ighland
s

S
outh A

m
b

oy • B
elford

W
eehaw

ken Ferry

Port Liberté Ferry

St
at

en
Is

la
nd

Fe
rr

y

Red Hook/Brooklyn

Arm
y Term

inal Ferry

Ferries: Hoboken
• Jersey City (Colgate)

Liberty Landing

LIRR

LIR
R

LIR
R

LIRR

M
et

ro
-N

or
th

Metro-North

M
et

ro
-N

or
th

M
et

ro
-N

or
th

LIRR

PATH

PATH

Amtrak

Am
tra

k

Am
trak

Am
trak

NJTransit • Amtrak

PATH

QUEENS
MIDTOWN
TUNNEL

MARINE PARKWAY-

GIL HODGES
MEMORIALBRIDGE

C
R

O
S

S
 B

A
Y

V
E

TE
R

A
N

S
’

M
E

M
O

R
IA

L

B
R

ID
G

E

BRONX-WHITESTONE BRIDGE

H
EN

R
Y

H
U

D
SO

N

B
R

ID
G

E

BROOKLYN-BATTERY TUNNEL

VERRAZANO-NARROWS BRIDGE

T
R

IB
O

R
O

U
G

H
B

R
ID

G
E

THROGS
 NECK
 BRIDGE

GEO. WASHINGTON
BRIDGE

LINCOLN TUNNEL

HOLLAND TUNNEL

MANHATTAN BRIDGE

1
4

AirTrain stops/
terminal numbers

7

5/6
8/9

2/3

Spuyten
Duyvil

Riverdale

University
Heights

Morris
Heights

Harlem
125 St

Melrose

Tremont

Fordham

Botanical Garden

Williams
Bridge

Woodlawn

Wakefield

Long
Island
City

9 St

14 St

23 St

33 St

Christopher St

Hunterspoint Av

Woodside

Shea Stadium

Flushing

Forest
Hills

JamaicaKew
Gardens

Hollis

Auburndale Bayside Douglaston

Manhasset

Plandome

Port
Washington

Great
Neck

Little
Neck

Murray
Hill

Broadway

Queens
Village

St Albans

Laurelton
Rosedale

Woodmere

Cedar-
hurst

Lawrence

Inwood

Locust
Manor

Far
Rockaway

East NY

Nostrand Av

Marble
Hill

WTC

M
TA

St
at

en
Is

la
nd

R
ai

lw
ay

P
A

L
IS

A
D

E
A

V

W 254 ST

IN
D

E
P

E
N

D
E

N
C

E
A

V

H
E

N
R

Y
H

U
D

S
O

N
P

K
W

Y

R
IVE

R
D

A
LE

AV B
R

O
A

D
W

A
Y

231 ST

IRWIN
AV

VAN CORTLANDT

PARK SO

W
A

L
D

O
A

V

M
O

S
H

O
LU

P
K

W
Y

B
A

IL
E

Y
A

V

FORDHAM RD

PELHAM
PKW

Y

C
R

O
T

O
N

A
A

V

P
R

O
S

P
E

C
T

A
V

G
R

A
N

T
H

W
Y

E 169 ST

CLAREMONT PKWY

180 ST

TREMONT AV

E TREMONT AV

W
E

B
S

T
E

R
A

V

B
A

IN
BR

ID
GE

T
H

IR
D

A
V

225 ST

BRUCKNER EXPWY

BRUCKNER

EXPW
Y

S
T

A
N

N
S

A
V

E
LD

ER

AV

STORY
AV

ST
LAW

REN
CE

AV

R
O

SED
ALE

AV

W
HITE

PLAINS
RD

W
HITE

PLAINS
RD

SOUNDVIEW
AV

172

ST

CASTLE
HILL

AV

ZEREGA
AV

EA
STC

H
ESTER

R
D

225 ST

H
U

TC
HINSO

N

PKW
Y

ALLERTON AV

B
O

S
T

O
N

R
D

WARING AV

WILLIAMSBRIDGE RD

BURKE
AV

222 ST

L
A

C
O

N
IA

A
V

233 ST
CO-OP CITY

BARTOW
AV

M
ID

DLETOWN RD

MORRIS

PARK AV

UNIONPORT AV

BAR
N

ES
AV

B
R

O
A

D
W

A
Y

NAGLE AV

10
A

V

F
T

W
A

S
H

A
V

R
IV

E
R

S
ID

E
D

R
R

IV
E

R
S

ID
E

D
R

145 ST

135 ST

ST NICHOLAS AV

A
M

S
T

E
R

D
A

M
A

V
10

A
V

F
IF

T
H

A
V

5
A

V

M
A

D
IS

O
N

A
V

M
A

D
IS

O
N

A
V

P
A

R
K

A
V

T
H

I R
D

A
V

3
A

V

S
E

C
O

N
D

A
V

2
A

V

2
A

V

1
A

V

F
IR

S
T

A
V

1
A

V

A
L

L
E

N
S

T

Y
O

R
K

A
V

W
E

S
T

E
N

D
A

V
11

A
V

72 ST

C
O

L
U

M
B

U
S

A
V

9
A

V

66 ST66 ST

12
A

V

W
E

S
T

S
T

G
R

E
E

N
W

IC
H

S
T

W
E

S
T

S
T

53 ST

8 ST8 ST

A
V

A

A
V

B

A
V

D

BANK ST

2 ST

CHARLTON
ST

GRAND ST

E BWAY

MADISON
ST

SO
UTH

ST

PEARL
ST

W
ATER

ST

ASTORIA BLVD

NORTHERN
BLVD

DITMARS BLVD

111 ST

112 ST

S
T

E
IN

W
A

Y
S

T

48
S

T

LONG ISLAND EXPWY

HORACE
HARDIN

G
EXPW

Y

LONG ISLAND

EXPWY

58
ST

36
S

T 30 AV

G
R

EE
N

P
O

IN
T

A
V

20 AV

21
S

T

JUNCTION
BLVD

37 AV
NORTHERN

BLVD

COLLEGE POINT BLVD

JEW
EL

AV

UTO
PIA

PKW
Y

164 ST

GUY
R. BREW

ER
BLVD

PARSONS BLVD

KISSENA BLVD

MAIN ST

HILLSID
E AV

JAMAIC
A

AV

FRANCIS LEWIS BLVD

SUTPHIN
BLVD

111 ST

LIN
DEN

BLVD

AUSTIN ST

CONDUIT AV

LEFFERTS BLVD

M
ERRICK

BLVD

KENT AV

METROPOLITAN AV

METROPOLITAN AV

NASSAU AV

BEDFORD AV

M
A

U
R

IC
E

A
V

FLUSHING AV

69 ST

FOREST AV

WOODHAVEN BLVD

MYRTLE AV

JA
C

K
IE

R
O

B
IN

S
O

N
P

A
R

K
W

A
Y

WILSON AV

BUSHWICK AV

MYRTLE AV

BERGEN ST

BERGEN ST

BERGEN
ST

H
IC

K
S

S
T

C
O

L
U

M
B

IA
S

T

H
E

N
R

Y
S

T

9 ST

UNION ST
CHURCH

AV

PROSPECT AV

OCEAN
PKW

Y

CONEY
ISLAND

AV

9
A

V

F
O

R
T

H
AM

IL
TO

N
PKW

Y

PARKSID
E

AV

W
IN

THROP
ST

NO
STRAND

AV

AV
Z

AV
U

FLATBUSH AV

W
ASHINGTON

U
TIC

A
AV

U
TIC

A
AV

T
H

IR
D

A
V

86 ST

K
IN

G
S

H
W

Y

F
IF

T
H

A
V

39 ST

REMSEN AV

NEW
YORK

AV

N
EW

YO
R

K
AV

AV
M

FL
A

TL
A

N
D

S
A

V

AV
H

OCEAN
AV

B
E

D
FO

R
D

A
V

BEDFORD
AV

VAN SICLEN AV

PENNSYLVANIA

AV

PO
R

T
W

A
SH

IN
G

TO
N

B
LV

D

C
R

O
S

S
 B

A
Y

 B
LVD

C
R

O
S

S
 B

A
Y

 B
LV

D

PARSONS BLVD

WHITESTONE

EXPW
Y

FRANCIS LEWIS BLVD

M
ID

D
LE

N
E

C
K

R
D

NORTHERN BLVD

NORTHERN BLVD

CANAL ST

CANAL ST

SPRING ST

BROOKLYN BRIDGE

QUEENSBORO BRIDGE

T R A M W A Y

HOUSTON ST

3
A

VBO
W

ER
Y

W 4 ST

4 ST

BLEECKER ST

BLEECKER ST

23 ST

12
A

V

23 ST

50 ST 50 ST

59 STCENTRAL PARK SOUTH

79 ST

125 ST

WASHINGTON BRIDGE

UNIVERSITY HTS BR

EKIPNRUT
NOINU

YWPXE
WEIVRAELC

163 ST

F
R

E
D

E
R

IC
K

D

O
U

G
L

A
S

S
 B

L
V

D

A
D

A
M

 C
L

A
Y

T
O

N
P

O
W

E
L

L
 B

L
V

D
 (7A

V
)

VAN
W

YCK
EXPW

Y

PITKIN AV

SEAGIRT BLVD

B
EA

C
H

C
HANNEL DR

R
O

C
K

A
W

A
Y

B
E

A
C

H
B

LV
D

K
IN

G
S

H
IG

H
W

A
Y

82 ST 83 ST

V
E

R
N

O
N

 B
L

V
D

B
E

A
C

H
C

H
A

N
N

E
L

D
R

R
O

C
K

A
W

A
Y

P
T

B
L

V
D

VICTORY BLVD

FOREST AV

R
IC

H
M

O
N

D
A

V

HYLAN
BLVD

H
Y

LA
N

B
LV

D

STATEN
ISLAND EXPRESSWAY

W
E

S
T

S
H

O
R

E
E

X
P

W
Y

A
R

T
H

U
R

K
IL

L
RD

ARTHUR KILL RD

RI
C

H
M

O
N

D
R

D

VA
N

D
E

R
B

IL
T

A
V

RICHMOND TERRACE

(L
E

N
O

X
A

V
)

M
A

L
C

O
L

M
X

B
L

V
D

NOSTRAND
AV

B
R

O
A

D
W

A
Y

B

ROADWAY BRID
GE

S
T

N
IC

H
O

L
A

S
A

V

B
R

O
A

D
W

A
Y

B
R

O
A

D
W

A
Y

Y
A

W
D

A
O

R
B

S
E

V
E

N
T

H
A

V

V
A

R
IC

K
S

T
LIV

ONIA
AV

W
EST

C
H

ES
TE

R
A

V

E 138 ST

L
E

X
IN

G
T

O
N

A
V

P
A

R
K

A
V

S
L

A
F

A
Y

E
T

T
E

S
T

EASTERN
PARKWAY

S
O

U
T

H
E

R
N

B
LV

D

W
ESTC

H
E

S
T

E
R

A
V

S
O

U
T

H
E

R
N

B
L

V
D

E
S

P
L

A
N

A
D

E

W
H

ITE
P

LA
IN

S
R

D

JE
R

O
M

E
A

V

M
ANHATTAN

AV

UNION
AV

LAFAYETTE
AV

W EST END LINE

N
A

S
S

A
U

S
T

DELANCEY ST

BROADWAY

FULTON
ST

JAM
AIC

A
AV

MYRTLE
AV

VAN
SINDEREN

AV

WYCKOFF AV

BUSHWICK AV
N 7 ST

HOUSTON ST

RUTGERS ST

T
S

Y
AJ

T
S

H
TI

M
S

NINTH ST

M
CDO

NALD
AV

CULVER
LINE

M
CDONALD

AV

V
A

H
T

R
U

O
F

86 ST

N
EW

U
TR

EC
H

T
AV

F
O

U
R

T
H

A
V

TS35

HIL
LSID

E
AV

41 AV63 ST

S
IX

T
H

A
V

VA
HSUBTALF

TS
51

E

BRIGHTON
LINE

E
16

ST

G
R

A
N

D
C

O
N

C
O

U
R

S
E

QUEENS BLVD

QUEENS BLVD

ARCHER
AV

LIB
ERTY

AV

PITKIN
AV

FULTON
ST

FULTON ST

C
H

U
R

C
H

S
T

S
IX

T
H

A
V

GREENWICH AV

E
IG

H
T

H
A

V
E

IG
H

T
H

A
V

C
EN

T
R

A
L

P
A

R
K

W
E

S
T

S
T

N
IC

H
O

L
A

S
A

V

F
O

R
T

W
A

S
H

IN
G

TO
N

A
V

BRO
AD

W
AY

FO
U

R
T

H
A

V

61 ST SEA BEACH LINE 63 ST

W
EST

8
ST

BROADWAY

3
1

S
T

60 ST

BRO
AD

W
A

Y

B
R

O
A

D
W

A
Y

T
R

IN
IT

Y
P

L

QUEENS BLVD

ROOSEVELT
AV

FLATBUSH AV

WILLIAMSBURG

BRIDGE

VAN
CORTLANDT

PARK

BRONX
ZOO

PELHAM
BAY

PARK

ORCHARD
BEACH

CENTRAL
PARK

WASHINGTON
SQUARE PARK

METROPOLITAN
MUSEUM
OF ART

RANDALLS
ISLAND

JAVITS
CENTER

RIVERBANK
STATE PARK

UNITED
NATIONS

WTC Site

FLUSHING
MEADOWS
CORONA

PARK

PROSPECT
PARK

BROOKLYN
BOTANIC
GARDEN

GREENWOOD
CEMETERY

LAGUARDIA
AIRPORT

JFK
INTERNATIONAL

AIRPORT

JAMAICA
BAY

WILDLIFE
REFUGE

EAST
RIVER
PARK

KISSENA
PARK

CUNNINGHAM
PARK

MARINE
PARK

FLOYD
BENNETT

FIELD

CALVARY
CEMETERY

NEW
CALVARY

CEMETERY

MT ZION
CEMETERY

MT OLIVET
CEMETERY LUTHERAN

CEMETERY

JUNIPER
VALLEY

PARK
ST JOHNS

CEMETERY

EVERGREEN
CEMETERY

FOREST
PARK

RIVERSIDE PARK

HUDSON RIVER PARK

HIGHBRIDGE
PARK

JACOB
RIIS

PARK

SILVER
LAKE
PARK

SNUG HARBOR
CULTURAL CENTER

CLOVE
LAKES
PARK

STATEN
ISLAND
MALL

SEA
VIEW

HOSPITAL

BAYLEY
SETON

HOSPITAL

COLLEGE OF
STATEN ISLAND

NEW
SPRINGVILLE

PARK

LA TOURETTE
PARK

GREAT
KILLS
PARK

=N D

FD

B

2

4

L

3

C

A

E

7

J Z

M

F

S

S

A

A

G

6

D

1

1

A

C

3B

B

7

L

2

5
5

4

6

5

5

E

6

M

J M

M

J
Z

G

G

A

A

A

A

2

4

4

4

4

4

5

5

5

5

5

5

5

5

6

6

6

6

6

M

M

M

M

J

J
Z

3

2

3

2
3

1

2

2

2

3

1

C

A
C

A

A

A

E

L
L

C

C

E

E

B

B

B

D

D

D

F

F

F

G

G

7

7

7

7

S

S

F

V

V

VE

E

F

F

6

1

1
2
3

F

J Z

J Z

V

F

G

G

D

B

D

D

B

D

D

B

DeKalb Av
B•M•Q•R

Hoyt St
2•3

Clar
k S

t
2• 3

Union St

M
• R

Carr
oll S

t
F• G

Berg
en

 St

F• G

Broad St
J•M•Z

York St

F
City Hall
 R•W

Rector St
R•W

Franklin St
1

Canal St
1

Prince St
N•R•W

Houston St
1

14 St
 A•C•E

50 St
1

50 St
C•E

59 St
Columbus Circle

A•B•C•D•1

66 St
Lincoln Center

1

72 St
1•2•3

79 St
1

86 St
1

96 St
1•2•3

103 St
1

Cathedral
Pkwy

(110 St)
1

116 St
 Columbia
University

1

137 St
City

College
1

145 St
1

157 St
1

175 St
A

181 St
A

190 St
A

Dyckman St
 A

238 St
1

Norwood
205 St
D

Mosholu Pkwy
4

Bedford Pk Blvd
Lehman College

4

Kingsbridge Rd
4

Fordham Rd
4

Allerton Av
2•5

183 St
4

Burnside Av
4

176 St
4

Mt Eden Av
4

170 St
4

174 St
2•5

Bronx Park
East

2•5

Pelham Pkwy
2•5

Freeman St
2•5

Simpson St
2•5

E 180 St
2•5

West Farms Sq

E Tremont Av2 •5

167 St
4

 161 St

 Yankee Stadium

 B •D •4

Van Cortlandt Park
242 St

1

Lexington

 Av/63 St
F

14
 St–U

nion Sq

 L
• N

• Q
• R

• W
• 4• 5• 6

 L

• N
• Q

• R
• W

3 A
v

 L 1 A
v

 L

8 St
NYU

N•R•W

Christopher St

Sheridan Sq
1

Canal St
J•M•N•Q
R•W•Z•6

Canal St
A•C•E

Spring St
6

Spring St
C•E

W 4 St
Wash Sq
A•B•C•D•E•F•V

8 A
v

L

Roose
ve

lt

Isl

and

F

Long Island City

Court Sq

 G

Queens
Plaza

E •G
•R •V

69 St
7

52 St
7 46 St

Bliss St

 740 St
Lowery St

7
33 St-Rawson St

7

Woodside

61 St
7

36 StG
•R

•V

90 St–Elmhurst Av
7

 Junction Blvd
 7

103 St–Corona Plaza
7

 111 St
 7 • Q48 LGA Airport

Elm
hurst

 Av

 G
• R

• V

Grand Av

 N
ewtown

 G

• R
• V

Woodhave
n Blvd

 G

• R
• V

63
 D

r

 R

ego Park

 G
• R

• V Forest
Hills

71
 Av

E• F• G
• R

• V

75
 Av

 E
• F Bria

rw
ood

 V
an W

yc
k Blvd

E• F

Sutphin Blvd
F

 Parsons Blvd
 F

169 St
F

Ja
maica

Van W
yc

k
E

Kew G
ard

ens

 U
nion Tpke

 E

• F67
 Av

 G

• R
• V

21 St
Queens-

bridge
F

39 AvN
•W

Steinway StG
•R •V

46 St
 G

•R •V

Northern Blvd

 G
•R •V

 65 St

 G
•R •V

74 St–Broadway 7

82 St–Jackson Hts

Q33 LGA Airport • 7

36 AvN
•W

30 Av
N•W

Astoria Blvd
N•W

Astoria
Ditmars Blvd

N•W

23 St–Ely Av
E•V

6 A

v
L

14 St
1•2•3

18 St
1

14 St
 F•V

23 St
F•V23 St

1

23 St
C•E 23 St

N•R•W

 23
 St

6

33 St
6

Hunters Point Av
7•LIRR

Vernon Blvd
Jackson Av

7

21 St
G

Queensboro
 Plaza

 N•W•7

45 Rd
Court House Sq

7

68 St
Hunter College
6

77 St
6

86 St
4•5•6

96 St
6

103 St
6

110 St
6

Central Park
North (110 St)
2•3

116 St
6

72 St
B•C

81 St–Museum
of Natural
History
B•C

86 St
B•C

96 St
B•C

103 St
B•C

Cathedral Pkwy
(110 St)
B•C

116 St
B•C

125 St
A•B•C•D

125 St
2•3 • M60
LaGuardia
Airport

125 St
4•5•6

135 St
B•C

135 St
2•3

116 St
2•3

3 Av
138 St
6

Brook Av

6

Cypress Av

6

E 143 St

St Mary’s St

 6145 St
A•B•C•D

191 St
1

Bedford Pk Blvd
B•D

Kingsbridge Rd
B•D

Fordham Rd
B•D

182–183 Sts
B•D

Tremont Av
 B•D

174–175 Sts
B•D

170 St
B•D

Morris Park
5

Pelham Pkwy
5

Burke Av
2•5

Gun Hill Rd
 2•5

219 St
 2•5

225 St
2•5

233 St
2•5

Nereid Av
2•5

Wakefield
241 St
2

Gun Hill Rd
5

Baychester
Av
5

Eastchester
Dyre Av
5

167 St
B•D

E 149 St
6

Longwood Av
6

Hunts Point Av
6

Whitlock Av
6

Elder Av
6

 Morrison
 Sound View Avs
 6

St Lawrence Av
6

Castle Hill Av
6

Zerega Av
6

Middletown Rd
6

Buhre Av
6

Pelham Bay Park
6

Parkchester
6

181 St
1

15
5 S

t

 B

• D15
5 S

t

C

16
3 S

t

Amste
rd

am
 Av

C

145 St
3

14
9 S

t–G
rand

Concourse

2• 4• 5Harlem
148 St
3

57 St
F

57 St-7 Av
N•Q•R•W

49 St
N•R•W

7
Av

B
• D

• E

28 St
1

28 St
 N•R•W

28 St
6

Astor Pl
 6

Bowery

J •M
•Z

East
Broadway

F

Lower E
ast

Side

2 A

v

F• V

Bleecker S
t

6
B’w

ay–
Lafaye

tte
 St

 B
• D

• F• V

Ess
ex

 St

 F
• J• M

• ZDela
nce

y S
t

Grand St
 B•D

Prospect Av
M•R

25 St
M•R

36 St
D•M•N•R

45 St
R

53 St
R

59 St
N•R

8 A
v

N

Fort
Hamilto

n

Pkwy
N

New U
tre

cht A
v

N 18
 Av

N
20

 Av
N

Bay P
kwy

N

Kings

Hwy
N

Avenue U
N
86 St

N

62
 St
D• M

71
 St
D• M

79
 St

D• M

18
 Av

D• M

20
 Av

D• M

Bay P
kwy

D• M
25 Av

D
Bay 50 St

D

Coney Island
Stillwell Av

D•F•N•Q

55
 St

D• M

50
 St

D• MFort
Hamilto

n

Pkwy
D• M

9 A
v
D• M Ditm

as A
v

F

18
 Av

F

Ave
nue I

F

Bay

Pkwy
F

Bay Ridge Av
R

77 St
R

86 St
R

Bay Ridge
95 St

R

Jay St
Borough Hall

A•C•F

Lafayette Av
C

Park
Pl
S

 Fulton StG

Smith

9 S
ts

F• G

4 A
v–

9 S
t

F• M
• R 7 A

v
F

15
 St

Prosp
ect P

ark F

Fort Hamilton
Pkwy

F

Church Av
F

Ave
nue N

F Ave
nue P

F
Kings H

wy

F

Ave
nue U

F

Ave
nue X

F
Neptune Av

F

West 8 St
NY Aquarium
F•Q

Ocean Pkwy
Q

Brighton Beach
B•Q

Sheepsh
ead Bay

B• Q

Neck Rd

Q

Ave
nue U

Q

Kings H
wy

B• Q

Ave
nue M

Q

Ave
nue J

Q

Ave
nue H

Q

Newkirk
 Av

B• Q

Corte
lyo

u Rd

Q

Beve
rle

y R
d

Q

Church Av

B• Q
Brooklyn

 C
olle

ge

Flatbush
 Av

2• 5

Newkirk
 Av

2• 5

Beve
rly

 Rd

2• 5

Church Av

2• 5

Winthrop St

2• 5

Sterling St
 2•5

President St
 2•5

Canarsie
Rockaway Pkwy
L

East 105 St
L

Aqueduct
North Conduit Av

A

Aqueduct
Racetrack
A

Van Siclen Av
CLiberty

Av
C

Ozone Park
Lefferts Blvd
A

111 St
A

104 St
A

Rockaway Blvd
 A

 88 St
 A

80 St
A

Grant Av
A

Euclid Av
A•C

Shepherd Av
C Howard Beach

JFK Airport
AAtlantic Av

L

Alabama Av
J

New Lots Av
 L B15 JFK Airport

Crescent St
J•Z

 Norwood Av
 Z rush hrs, J other times

 Cleveland St
 J

Bush
wick Av

Aberdeen St

 L

Wils
on Av

L

DeKalb Av

 L
Je

ffe
rso

n St

L

Flush
ing Av

 J
• MLorim

er S
t

 J
• MBroadway

G

Nass
au Av

G

Greenpoint A
v

G

Lorim
er S

t

L Graham

Av

L Grand St

 L Montro
se

 Av

L Morgan Av

 L

Livonia Av
 L

Sutte
r

Av
L

Nostrand Av

A •CFranklin Av

 C
•S

Kingston

Throop Avs

C

Utica Av

A •C

Ralph Av

C

Chauncey St

Z rush hours,

 J other times

 Myrtle
Wyckoff Avs
L•M

 Halsey St

J
 Gates Av

 Z rush hours,

J other times

Kosciuszko St

JMyrtle Av

J •M
•Z

Central Av
 M

Seneca Av
M

Myrtle
Willoughby Avs
 G

Flush
ing Av

GMarcy A
v

J• M
• Z

Metropolitan Av
 G

Bedford Av

 L

Fresh Pond Rd
M

Hals
ey

 St

 L

Rockaway

AvC

Bro
ad

way

Ju
nc

tio
n

 A

• C
• J•

L• Z

Parkside Av
Q

Prospect
 Park
 B•Q•S

Botanic
 Garden
 S

Clinton

Washington Avs
G

Classon Av
G

Hew
es

 St
J• M

Bedford

Nostrand Avs
G

Clin
ton

Wash
ington Avs

C

 Hoyt
Schermerhorn

A•C•G

Lawrence St
M•R

Kingston Av
3

Franklin
 Av

2• 3• 4• 5
Beach
44 St
A

Beach 36 St
A

Beach 25 St
A

 Far Rockaway
Mott Av

A

Broad
Channel

A•S

Beach
67 St
A

Beach
60 St
A

Beach 90 St
A•S

Beach 98 St
A•S

Beach 105 St
A•S

Rockaway Park
Beach 116 St

A•S

Broadway
N•W

Knickerbocker Av
 M

Middle Village
Metropolitan Av
M

Forest Av
M

High St
A•C

Atlantic Av
 B•Q•2•3•4•5•LIRR

Whitehall St
R•W

Bowling
Green

4•5

Wall St
4•5 Wall St

 2•3

Fulton St
Broadway-Nassau

Chambers St
1•2•3

Park
 Place
 2•3

Chambers St
J•M•Z
Brooklyn Bridge
City Hall
4•5•6

Chambers St
 A•C

Atla
ntic

 Av-P
ac

ific
 St

D• M
• N

• R
• LIR

R

Ber
gen

 St
2• 3

7 A
v

B• Q

Nevins St
2•3•4•5

Boro
ugh H

all

2• 3• 4• 5

Court St
M•R

Gra
nd A

rm
y

Plaz
a

2• 3
Eas

ter
n Pkw

y

Bro
okly

n M
use

um
2• 3

34 St
Penn

Station
 A•C•E•LIRR

 42 St
Port Authority
Bus Terminal

 A•C•E
 Times Sq

42 St
N•Q•R•S•W•1•2•3•7

Grand Central
42 St
S•4•5•6•7•Metro-North

47–50 Sts
Rockefeller Ctr
B•D•F•V

34 St
Penn

Station
1•2•3•LIRR

34 St
Herald Sq

B•D•F
N•Q•R•V•W

42 St
Bryant Pk
B•D•F•V

5 Av
 7

Lexington Av/53 St E•V

59 St
4•5•6

51 St
6

Lexington Av/59 St
N•R•W

5 Av/53 St
E•V

 5 Av/59 St
N•R•W

125 St
1

168 St
 A•C•1

Dyckman St
1

Inwood
207 St

A

215 St
1

3 Av–149 St
2•5

Woodlawn
4

Marble Hill
225 St
1

231 St
1

 75 St
 Z rush hours,
 J other times
Cypress Hills
 J

85 St–Forest Pkwy
 J

Woodhaven Blvd
 J•Z

 104 St
 Z rush hours,
 J other times

111 St
J

 121 St
 Z rush hours,
 J other times

Sutphin Blvd
Archer Av
JFK Airport
E•J•Z•LIRR

Jamaica
179 St
F

Jamaica Center
Parsons/Archer
E•J•Z
 Jackson Hts

Roosevelt Av

E •F •G
•R •V

 Flushing
Main St

 7

Nostrand Av
3

 Crown Hts
Utica Av
3•4

Saratoga Av
 3

Rockaway Av
 3

Junius St
 3

Pennsylvania Av
3

Van Siclen Av
3

New Lots Av
3

Sutter Av–Rutland Rd
3

A•C•J•M•Z
2•3•4•5

Open 11am-7pm
on racing days

 Westchester Sq
 East Tremont Av
 6

Intervale Av
 2•5

Prospect Av
 2•5

Jackson Av
 2•5

 Willets Point
Shea Stadium
7 • Q48 LGA Airport

 Van Siclen Av
 Z rush hrs,
 J other times

138 St–Grand
Concourse
4•5

M60 LaGuardia Airport

M60 LGA Airport

Rector St
1

Cortlandt St
1

Cortlandt St
R•W

South Ferry
1

World Trade
Center

E

 207 St
 1

rush
hours

rush
hours

rush
hours

St. George

Tompkinsville

Stapleton

Clifton
 S51

Grasmere

Old Town

Dongan Hills

Jefferson Av

Grant City
 S51/81

New Dorp

Oakwood Heights
 S57

Bay Terrace

 Great Kills
S54 X7 X8

Eltingville

Annadale
 S55

 Huguenot
S55 X17 X19

Prince's Bay
 S56

Pleasant Plains

Richmond Valley
Nassau
S74/84

Atlantic
S74/84

Stadium
(game days only)

Tottenville
 S74/84

(Temporarily
Closed)

Q10 JFK Airport

=

 = = =
 =

 = =

=

=

Flushing–Main St
Subway 7

NYC Transit Bus
Q12 Little Neck
Q13 Ft Totten
Q14 Whitestone
Q15 Beechhurst
Q16 Ft Totten
Q17 Jamaica
Q20A/B College Pt–Jamaica
Q26 Auburndale
Q27 Cambria Heights
Q28 Bay Terrace
Q44 Bronx Zoo–Jamaica
Q48 LaGuardia Airport 0
Q58 Ridgewood

MTA Bus
Q25 Jamaica–College Pt
Q34 Jamaica–Willets Pt
Q65 Jamaica–College Pt
Q66 Long Island City
QBx1 Co-op City

LI Bus
N20 Hicksville
N21 Glen Cove

LIRR

Queens Plaza
Queensboro Plaza
Subway EG=N=RVW7

NYC Transit Bus
B61 Red Hook
Q32 Midtown Manhattan

Green Bus Lines
Q60 Queens Blvd

MTA Bus
Q66 Northern Blvd
Q67 Middle Village
Q101 Steinway St
Q102 31 St

Triboro Coach
Q19A 21 St/Ditmars Blvd
Q39 Forest Av

Woodhaven Blvd
Queens Center
Subway G=RV

NYC Transit Bus
Q59 Williamsburg
Q88 Queens Village
Green Bus Lines
Q11 Woodhaven Blvd

Triboro Coach
Q29 80 St
Q38 Eliot Av
Q53 Woodside–Rockaway Park

Jamaica–Sutphin Blvd
Long Island Rail Road
Subway EJZ

NYC Transit Bus
Q20A/B College Point
Q24 Atlantic Av
Q30 Little Neck
Q31 Bayside
Q43 Hillside Av
Q44 Flushing–Bronx Zoo
Q54 Metropolitan Av
Q56 Jamaica Av

Green Bus Lines
Q6 JFK Postal Facility
Q8 City Line
Q9 S. Ozone Park
Q40 Jamaica
Q41 Lindenwood
Q60 S. Jamaica

AIRTRAIN

Kew Gardens
Union Tpke
Subway EF

NYC Transit Bus
Q46 Glen Oaks
Q74 Queens College

Green Bus Lines
Q10 JFK Airport
Q37 111 St

121 St
Subway JZ
Green Bus Lines
Q10 Kew Gardens,
 JFK Airport 0

Myrtle–Wyckoff Avs
Subway LM

NYC Transit Bus
B13 Spring Creek–Williamsburg
B26 Halsey St
B52 Gates Av
B54 Myrtle Av
Q55 Richmond Hill
Q58 Flushing

Grand Central Terminal
Metro-North Railroad
Subway S4567

NYC Transit Bus
M1 5th/Madison Avs
M2 5th/Madison Avs
M3 5th/Madison Avs
M4 5th/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M42 42 St Crosstown
M98 Washington Hts
M101 Third/Lex Avs
M102 Third/Lex Avs
M103 Third/Lex Avs
M104 Broadway
Q32 Jackson Hts/Penn Station
X25 Downtown Manhattan

NY Airport Service 0
Newark Airport Express

Forest Hills
71 Av
Subway EFGRV
MTA Bus
Q65A Jewel Av

Triboro Coach
Q23 108 St
LIRR

Howard Beach
JFK Airport
Subway A
Green Bus Lines
Q11 Woodhaven Blvd

AIRTRAIN

Euclid Av/Pitkin Av
Subway AC

NYC Transit Bus
B13 Spring Creek–Williamsburg

Green Bus Lines
Q7 Rockaway Blvd
Q8 101 Av

New Lots Av
Subway 3

NYC Transit Bus
B6 Bensonhurst–East New York
B15 JFK Airport 0

Canarsie
Rockaway Pkwy
Subway L

NYC Transit Bus
B6 Bensonhurst–East New York
B17 Remsen Av
B42 Rockaway Pkwy
B60 Wilson Av
B82 Coney Island–Starrett City

Brooklyn College/
Flatbush Av
Subway 25

NYC Transit Bus
B6 Bensonhurst–East New York
B11 49/50 Sts–Avenue J
B41 Flatbush Av
B44 Nostrand Av

Green Bus Lines
Q35 Marine Pkwy Bridge

Command Bus Co
B103 Canarsie

= =

Coney Island
Stillwell Av
Subway =DFNQ
NYC Transit Bus
B36 Avenue Z & Surf Av
B64 Bath Av
B68 Coney Island Av
B74 Mermaid Av
B82 Spring Creek

Bay Pkwy/86 St
Subway=D M

NYC Transit Bus
B1 86 St
B6 Bensonhurst–East New York
B82 Coney Island–Starrett City

86 St/4 Av
Subway R

NYC Transit Bus
B16 Ft Hamilton Pkwy
B37 Third Av
B63 Fifth Av
B64 Bath Av
S53 Port Richmond
S79 SI Mall via Hylan Blvd
S93 Willowbrook

Atlantic Av/Atlantic Av-
Pacific St
Long Island Rail Road
Subway =B=DM=N=Q=R
2345

NYC Transit Bus
B41 Flatbush Av
B45 St John’s Pl
B63 Fifth Av
B65 Dean/Bergen Sts
B67 Seventh Av

Court St/Borough Hall
Subway MR2345

Jay St–Borough Hall
Subway ACF

NYC Transit Bus
B25 Fulton St
B26 Halsey St
B37 Third Av
B38 DeKalb Av
B41 Flatbush Av
B45 St John’s Pl
B51 City Hall
B52 Gates Av
B54 Myrtle Av
B57 Flushing Av
B61 Red Hook–Queens Plaza
B65 Dean/Bergen Sts
B67 Seventh Av
B75 Ninth St

Command Bus Co.
B103 Canarsie

Broadway–Nassau
Fulton Street
Subway ACJMZ
23 45

NYC Transit Bus
M1 Fifth/Madison Avs
M6 Broadway/Sixth Av
M15 First/Second Avs

City Hall
Subway RW

Bklyn Bridge–City Hall
Subway JMZ456

NYC Transit Bus
M1 Fifth/Madison Avs
M6 Broadway/Sixth Av
M15 First/Second Avs
M22 Madison St
M103 Third/Lexington Avs
B51 Downtown Brooklyn

Marcy Av
Subway JMZ

NYC Transit Bus
B24 Greenpoint Av
B39 Williamsburg Br
B44 Nostrand Av
B46 Utica Av
B60 Wilson Av
Q54 Metropolitan Av

Penn Station
Long Island Rail Road
Subway ACE123

NYC Transit Bus
M4 5th/Madison Avs
M10 Central Park West
M16 34 St Crosstown
M20 7th/8th Avs
M34 34 St Crosstown
Q32 Jackson Hts
NJ Transit • Amtrak
Newark Airport Express •
NY Airport Service 0

Port Authority
Bus Terminal
Subway ACE
NYC Transit Bus
M10 Central Park West
M11 9th/10th Avs
M16 34 St Crosstown
M20 7th/8th Avs
M27 49/50 Sts Crosstown
M42 42 St Crosstown
M104 Broadway
Newark Airport Express •
NY Airport Service •
NJ Transit • Other
commuter & long-
distance buses

Crown Heights
Utica Av
Subway 34

NYC Transit Bus
B14 Sutter Av
B17 Remsen Av
B46 Utica Av

Rockaway Blvd
Subway A

Green Bus Lines
Q7 City Line–JFK Cargo Area
Q11 Elmhurst
Q21 Rockaway Park
Q41 Lindenwood
Jamaica Buses
Q112 Liberty Av

Far Rockaway
Subway A

Green Bus Lines
Q22 Rockaway Beach Blvd
Q22A Bayswater

Jamaica Buses
Q113 Jamaica

LI Bus
N31 Hempstead
N32 Hempstead
N33 Long Beach

LIRR

Jackson Heights
74 St–Roosevelt Av
Subway EFGRV7

NYC Transit Bus
Q32 Midtown Manhattan

Triboro Coach
Q19B 35 Av
Q33 82/83 Sts LGA Airport 0

(except Marine Air Terminal)
Q45 69 St
Q47 73/74 Sts LGA Airport 0

(Marine Air Terminal only)
Q53 Woodhaven Blvd

Middle Village
Metropolitan Av
Subway M

NYC Transit Bus
Q54 Metropolitan Av

MTA Bus
Q67 Middle Village

Triboro Coach
Q38 Eliot Av

Broadway Junction
Subway ACLJZ

NYC Transit Bus
B20 Ridgewood–New Lots
B25 Fulton St
B83 Starrett City
Q24 Atlantic Av
Q56 Jamaica Av

LIRR

Jamaica–169 St/179 St
Subway F

NYC Transit Bus
Q1 Queens Village
Q2 Belmont Park
Q3 JFK Airport 0
Q17 Flushing
Q30 Little Neck (169 St only)
Q31 Bayside (169 St only)
Q36 Floral Park
Q43 Hillside Av
Q75 Oakland Gardens
Q76 College Point
Q77 Springfield Gardens

Jamaica Buses
Q110 Jamaica Av (179 St only)
LI Bus
N1 Elmont Rd
N2 Meacham Av
N3 Franklin Av
N6 Hempstead
N22 Hicksville
N22A Roosevelt Field
N24 Roosevelt Field
N26 Manhasset

Jamaica Center
Subway EJZ

NYC Transit Bus
Q4 Cambria Heights
Q5 Green Acres Mall–Rosedale
 (via Merrick Blvd)
Q20A/B College Point
Q24 Atlantic Av
Q30 Little Neck
Q31 Bayside
Q42 Addesleigh Park
Q44 Flushing–Bronx Zoo
Q54 Metropolitan Av
Q56 Jamaica Av
Q83 Cambria Heights
Q84 Laurelton
Q85 Green Acres Mall
 (via Bedell St)

Green Bus Lines
Q6 JFK Postal Facility
Q8 City Line
Q9 S. Ozone Park
Q41 Lindenwood
Jamaica Buses
Q110 Jamaica Av
Q111 Guy R Brewer Blvd
Q112 Liberty Av
Q113 Far Rockaway

MTA Bus
Q25 Flushing–College Point
Q34 Flushing–Willets Point
Q65 Flushing–College Point

LI Bus
N4 Freeport

Pelham Bay Park
Subway 6

NYC Transit Bus
Bx5 Bruckner Blvd/Story Av
Bx12 Pelham Pkwy/Bay Plaza
Bx12 Orchard Beach
Bx14 Country Club–Parkchester
Bx29 Bay Plaza–City Island

MTA Bus
QBx1 Co-op City–Flushing

Bee-Line
45 Eastchester

Westchester Square
East Tremont Av
Subway 6

NYC Transit Bus
Bx4 Westchester Av
Bx8 Throgs Neck
Bx21 Boston Rd–Morris Park Av
Bx31 Eastchester Rd
Bx40 Throgs Neck
Bx42 Throgs Neck

Parkchester
Subway 6

NYC Transit Bus
Bx4 Westchester Av
Bx14 Country Club–Parkchester
Bx36 Soundview
Bx39 Clason Pt
Q44 Bronx Zoo–Jamaica

Fordham Plaza
Metro-North
NYC Transit Bus
Bx9 B’way/Kingsbridge Rd
Bx12 Pelham Pkwy/
 Fordham Rd
Bx15 Third Av/125 St
Bx17 Crotona/Prospect Avs
Bx22 Castle Hill Av
Bx41 Webster Av/W. Plains Rd
Bx55 Third Av
Bee-Line
60 White Plains
61 Port Chester
62 White Plains

3 Av–149 St
Subway 25

NYC Transit Bus
Bx2 Grand Concourse
Bx4 Westchester Av
Bx15 Third Av/125 St
Bx19 Southern Blvd/E 149 St
Bx21 Morris Pk Av/Boston Rd
Bx41 Webster Av/W. Plains Rd
Bx55 Third Av

Hunts Point Av
Subway 6

NYC Transit Bus
Bx5 Story Av/Bruckner Blvd
Bx6 Hunts Point
Bx19 Southern Blvd/E 149 St

Norwood–205 St
Subway D

NYC Transit Bus
Bx10 Riverdale
Bx16 E 233 St/Nereid Av
Bx28 E Gun Hill Rd
Bx30 Boston Rd/E Gun Hill Rd
Bx34 Bainbridge Av

Wakefield–241 St
Subway 2

NYC Transit Bus
Bx41 Webster Av/White Plains Rd

Bee-Line
40 Westchester County Med Ctr
41 Westchester County Med Ctr
42 New Rochelle

Metro-North

Woodlawn
Subway 4

NYC Transit Bus
Bx16 E 233 St/Nereid Av
Bx34 Bainbridge Av

Bee-Line
4 Yonkers
20 White Plains
21 White Plains

M60
LaGuardia
Airport

Kings Hwy/E 16 St
Subway =B=Q

NYC Transit Bus
B2 Avenue R
B7 Kings Highway
B31 Gerritsen Av
B82 Coney Island–Starrett City

Command Bus Co
B100 Mill Basin

Sheepshead Bay
Subway =B=Q
NYC Transit Bus
B4 Bay Ridge Pkwy
B36 Avenue Z & Surf Av
B49 Ocean Av

=F

34 Street-Herald Sq
Subway BDFN
 QRVW
NYC Transit Bus
M4 5th/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M6 B’way/Sixth Av
M7 Columbus/Amsterdam Avs
M16 34 St Crosstown
M34 34 St Crosstown
Q32 Jackson Hts

PATH

2,3 and northbound 4,5

4,5,6 only

Simpson St
Subway 25

NYC Transit Bus
Bx4 Westchester Av
Bx5 Story Av/Bruckner Blvd
Bx11 G.W. Bridge
Bx19 Southern Blvd/E 149 St
Bx27 Clason Point
Bx35 Washington Heights

Van Cortlandt Pk–242 St
Subway 1

NYC Transit Bus
Bx9 Broadway/West Farms Sq

Bee-Line
1 Yonkers/Hastings
1C Westchester Cty Comm Coll
1T Tarrytown
1W White Plains
2 Yonkers
3 White Plains

Marble Hill–225 St
Subway 1

NYC Transit Bus
Bx7 Riverdale Av/Broadway
Bx9 Broadway/Kingsbridge Rd
Bx20 Inwood/Riverdale

Metro-North

Inwood–207 St
Subway A

NYC Transit Bus
M100 B'way/Amsterdam Av
Bx7 Riverdale Av/Broadway
Bx12 Pelham Pkwy/Fordham Rd
Bx20 Marble Hill/Riverdale

A only

George Washington
Bridge Bus Station
175 St/181 St
Subway A1
NYC Transit Bus
Bx3 University Av
Bx7 Riverdale Av/B’way
Bx11 Clrmnt Pkwy/170 St
Bx13 Ogden Av
Bx35 E 167 St
Bx36 E174 St
M4 Fifth/Madison Avs
M5 Riverside Dr/5 Av/6 Av
M98 Midtown
M100 Amsterdam Av/B’way

NJ Transit
Red & Tan Lines

125 St/Metro-North
Subway 456

NYC Transit Bus
Bx15 Third Av/125 St
M35 Wards Island
M60 LaGuardia Airport 0
M98 Wshngtn Hts/Midtown
M100 Amsterdam Av/B’way
M101 Third/Lex Avs
M103 Third/Lex Avs

Times Sq–42 St
Subway =N=Q=RS=W
1237

NYC Transit Bus
M6 B’way/Sixth Av
M7 Columbus/Amsterdam Avs
M10 Central Park West
M20 7th/8th Avs
M27 49/50 Sts Crosstown
M42 42 St Crosstown
M104 Broadway

Staten Island Mall
NYC Transit Bus
S44/94 St. George via Cary Av
S55 Huguenot via Annadale Rd
S56 Huguenot via Woodrow Rd
S59 Port Richmond–Tottenville
S61/91 St. George via Bradley Av
S79 Bay Ridge via Hylan Blvd
X17 East Midtown
X31 East Midtown

Eltingville
Staten Island Railway
NYC Transit Bus
S59 Port Richmond–Tottenville
S79 SI Mall–Bay Ridge
X1 West Midtown
X4 Downtown Manhattan
X5 East Midtown
X6 West Midtown

New Dorp
Staten Island Railway
NYC Transit Bus
S57 Port Richmond
S76/86 Oakwood

Grasmere
Staten Island Railway
NYC Transit Bus
S53 Bay Ridge–Port Richmond

St. George
Staten Island Railway
NYC Transit Bus
S40/90 Howland Hook via Richmond Terr
S42 St Marks Pl
S44/94 SI Mall via Cary Av
S46/96 Castleton Av
S48/98 Forest Av
S51/81 Grant City
S52 South Beach
S61/91 SI Mall via Bradley Av
S62/92 Victory Blvd
S66 Pt Richmond via Jewett Av
S67 Pt Richmond via Watchogue Rd
S74/84 Tottenville via Richmond Rd
S76/86 Oakwood
S78 Tottenville via Hylan Blvd

Staten Island Ferry

Port Richmond
NYC Transit Bus
S40/S90 St. George/Howland Hook
S53 Bay Ridge, Brooklyn
S57 New Dorp
S59 Tottenville
S66 St. George via Jewett Av
S67 St. George via Willowbrook Rd

 (45: platform
elevator accessible only from
two doors nearest to conductor)

southbound only
n-bound

s-bound

6

BROOKLYN

MANHATTAN

STATEN
ISLAND

QUEENS

THE
BRONX

FINANCIAL
DISTRICT

BATTERY
PARK CITY

BATTERY
PARK CITY

CHINATOWN

LITTLE ITALYSOHO

TRIBECA

GREENWICH
VILLAGE

CHELSEA

WEST
SIDE

UPPER
EAST
SIDE

UPPER
WEST
SIDE

EAST
HARLEM

HARLEM

WASHINGTON
HEIGHTS

EAST
VILLAGE

LOWER
EAST SIDE

NOHO

RIVERDALE

KINGSBRIDGE

HIGH-
BRIDGE

FORDHAM

TREMONT

MORRISANIA

THE HUB

HUNTS
POINTMOTT HAVEN

SOUNDVIEW

PARKCHESTER

BAYCHESTER

CO-OP
CITY

EASTCHESTER

ASTORIA

LONG
ISLAND

CITY

ROOSEVELT
ISLAND

JACKSON
HEIGHTS

CORONA

FLUSHING

HILLCREST

FRESH
MEADOWS

JAMAICA
ESTATES

JAMAICA

HOLLIS

QUEENS
VILLAGE

KEW
GARDENS

KEW
GARDENS

HILLS

RICHMOND
HILL

FOREST
HILLS

REGO PARK

MIDDLE
VILLAGE

GLENDALE
WOODHAVEN

OZONE
PARK

HOWARD BEACH
EAST
NEW
YORK

OCEAN HILL-
BROWNSVILLE

CANARSIE

EAST
FLATBUSH

MIDWOOD

BENSONHURST

FLATBUSH

PARK
SLOPE

RED
HOOK

GOVERNORS
ISLAND

CARROLL
GARDENS

FLATLANDS

ROCKAWAY
PARK

BREEZY
POINT

SHEEPSHEAD
BAY

BRIGHTON
BEACH

CONEY ISLAND

BAY RIDGE

BOROUGH
PARK

SUNSET
PARK

BROOKLYN
HEIGHTS

WILLIAMSBURG

FORT GREENE

GREENPOINT

BEDFORD-
STUYVESANT

CROWN
HEIGHTS

BUSHWICK

RIDGEWOOD

MASPETH

FULTON
LANDING

NAVY
YARD

WEST NEW
BRIGHTON

FOX
HILLS

NEW
BRIGHTON

ROSEBANK

CASTLETON
CORNERS

BULLS
HEAD

CHELSEA

PORT
RICHMOND

MARINERS
HARBOR

PORT
IVORY

HOWLAND
HOOK

WESTERLEIGH

RICHMONDTOWN

DONGAN
HILLS

TODT
HILL

NEW
DORP
BEACH

ARDEN
HEIGHTS

FRESH
KILLS

TOTTENVILLE
BEACH

WOODROW

CHARLESTON

ROSSVILLE

NEW YORK
TRANSIT MUSEUM

During the reconstruction of South Ferry and Fulton Street stations,
weekend and late night 12345 service is subject to change. For
the latest service information, call the NYCT Travel Information Center at
718-330-1234, check station posters, or visit the MTA website at
www.mta.info.

WEEKEND AND LATE NIGHT 12345
SERVICE SUBJECT TO CHANGE

Norwood/205 Street, Bronx –
Coney Island, Brooklyn;
Express in Bronx (peak direction),
Manhattan and Brooklyn

Norwood/205 Street,
Bronx – Coney Island,
Brooklyn; Local in Bronx and
Brooklyn, Express in
Manhattan

Jamaica/179 St, Queens – Coney Island, Brooklyn;
Express, Forest Hills/71 Avenue–21 St/Queensbridge, Queens; Local in Manhattan and Brooklyn

145 St, Manhattan – Brighton
Beach,Brooklyn ; Local in upper

Manhattan, Express in midtown Manhattan
and Brooklyn until 9PM

Bedford Park Blvd, Bronx –
Brighton Beach, Brooklyn;
 Local in Bronx and upper
Manhattan, Express in midtown
Manhattan and Brooklyn

Norwood/205 St, Bronx – Coney Island, Brooklyn;
Local in Bronx, Express in Manhattan and Brooklyn

Forest Hills/71 Av, Queens – Lower East Side/2 Av, Manhattan; Local

Washington Heights/168 St, Manhattan – Euclid Avenue, Brooklyn; Local

Jamaica Center, Queens – World Trade Center, Manhattan; Express in Queens, Local in Manhattan;
some rush hour trips to/from Jamaica/179 St, Queens

Jamaica Center, Queens,–
World Trade Center,
Manhattan; Local

Broad Channel – Rockaway Park/Beach 116 St, Queens, Local; connect with =A at Broad Channel

Inwood/207 St, Manhattan – Ozone Park/Lefferts Blvd or Far Rockaway, Queens;
Express in Manhattan and Brooklyn, Local in Queens; Note: A also serves Rockaway Park, Queens, during

rush hours; other times transfer to S Rockaway Park Shuttle at Broad Channel, Queens

No service, use =E F G

Long Island City/Court Sq, Queens – Smith/9 Sts,
Brooklyn; Local Forest Hills/71 Av, Queens – Smith/9 Sts, Brooklyn; Local

No service, use =A

No service, use =A C D

Inwood/207 Street,
Manhattan – Far Rockaway,
Queens; Local
Note: Lefferts Blvd shuttle
connects at Euclid Avenue

Astoria/Ditmars Blvd, Queens – Coney Island, Brooklyn;
Local in Queens, Express in Manhattan and Brooklyn

Astoria/Ditmars Blvd,
Queens – Coney Island,

Brooklyn; Local in Queens and
Manhattan, Express in Brooklyn

Astoria/Ditmars Blvd,
Queens – Coney Island,

Brooklyn; Local;
via Lower Manhattan

Metropolitan Av, Queens –
Bay Parkway, Brooklyn;
Local

Metropolitan Av, Queens –
Chambers St, Manhattan;
Local

Metropolitan Av, Queens – Myrtle Av, Brooklyn;
Local; connect with =J at Myrtle Av

Franklin Av – Prospect Park, Brooklyn; Shuttle

Jamaica Center, Queens –
Broad St, Manhattan;
Local, in Queens and
Manhattan; Express, Myrtle Av-
Marcy Av peak direction only

=J/=Z skip-stop service
between Sutphin Blvd and
Myrtle Av peak direction only

8 Av, Manhattan – Canarsie/Rockaway Parkway, Brooklyn; Local

Midtown-57 St/7Av, Manhattan – Coney Island, Brooklyn; Express in Manhattan, Local in Brooklyn

No =Z service, use =J

= =

=

No service, use N R

Jamaica Center, Queens –
Broad St, Manhattan;
Local

Jamaica Center, Queens –
Broad St, Manhattan;
Local, in Queens and
Manhattan; Express, Myrtle
Av-Marcy Av peak direction only

Jamaica Center, Queens –
Chambers St, Manhattan;
Local; connect with =4 =5 =6
at Chambers St

Jamaica Center, Queens –
Broad St, Manhattan;
Local (to Chambers St only
weekend nights)

Forest Hills/71 Av, Queens – Bay Ridge/95 St, Brooklyn; Local

Astoria/Ditmars Blvd, Queens – Whitehall St,
Manhattan; Local until 9PM

36 St – Bay Ridge/95 St,
Brooklyn; Local; connect with
 or at 36 St. NOTE: skips
53 St and 45 St northbound

Times Square – Grand Central, Manhattan; Shuttle No service, use =7

Dyre Av, Bronx – Bowling Green, Manhattan; Local in Bronx;
Express in Manhattan

Flushing/Main St, Queens – Times Square, Manhattan; Local

Pelham Bay Park, Bronx – Brooklyn Bridge, Manhattan;
Local

Van Cortlandt Park/242 St, Bronx – South Ferry, Manhattan; Local

Wakefield/241 St, Bronx – Flatbush Av, Brooklyn; Express in Manhattan; Local in Bronx and Brooklyn
some rush hour trips to/from New Lots Av, Brooklyn

No service:
Free transfer between =2 and M7
or M102 bus at 135 St

Woodlawn, Bronx –
New Lots Av, Brooklyn;
Local

Wakefield/241 St, Bronx –
Flatbush Av, Brooklyn;
Local

Dyre Av – E 180 St, Bronx;
Local; transfer to =2 at E 180 St

Flushing/Main St, Queens – Times Square, Manhattan
=7
±‡

Pelham Bay Park or Parkchester, Bronx –
Brooklyn Bridge, Manhattan
=6
fl

to Parkchester, Local
to Pelham Bay Park, Express in Bronx, peak direction only;
Local in Manhattan

Local
Express peak direction only until 10PM

Woodlawn, Bronx – Crown Heights/Utica Av, Brooklyn;
Local in Bronx; Express in Manhattan and Brooklyn Note: skips 138 St, Bronx, rush hours in peak direction

some rush hour trips to/from New Lots Av, Brooklyn

Harlem/148 St, Manhattan – New Lots Av, Brooklyn; Express in Manhattan; Local in Brooklyn

Nereid Av or Dyre Av, Bronx – Flatbush
Av, Brooklyn; Express in Manhattan and
Brooklyn; Express in Bronx, peak direction
only; some rush hour trips to/from Utica Av or
New Lots Av, Brooklyn

1

2

3

4

5

6

7 Flushing
Local

Lexington Av
Local

Lexington Av
Express

Lexington Av
Express

7 Avenue
Express

Broadway/7 Av
Local

7 Avenue
Express

A

C
E

G Bklyn-Queens
Crosstown
Local

8 Avenue
Local

8 Avenue
Local

8 Avenue
Express

Rockaway Park
Shuttle

B

D

F

6 Avenue
Express

6 Avenue
Express

6 Avenue
Local

V 6 Avenue
Local

Franklin Av
Shuttle

J

Z

L 14 St-Canarsie
Local

Broadway
Express

Nassau Street
Express

Nassau Street
Express

S

S

Broadway
Local

Broadway
Local

Broadway
Express

M Nassau Street
Local

42 Street
ShuttleS

=N

=Q

=R

=W

=N

=Q

=R

Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Time of day

Route

Time of day

Route

Rush HoursRush Hours
6:30 AM – 9:30 AM,
3:30 PM – 8:00 PM
Monday – Friday

MiddaysMiddays
9:30 AM – 3:30 PM
Monday – Friday

EveningsEvenings
8:00 PM – 12 midnight
Monday – Friday

Late NightsLate Nights
12 midnight – 6:30 AM
Every day

WeekendsWeekends
6:30 AM – 12 midnight
Saturday & Sunday

Time of day

Route

D

Subway Service Guide

≤ Accessible Stations

Routes Station
MANHATTAN

A

175 St

CE 50 St/8 Av southbound only

A

Inwood - 207 St

ACE 34 St/Penn Station

ACEL

E

14 St/8 Av

World Trade Center

Cortlandt St southbound only

ACE 42 St/8 Av (Port Authority Bus Terminal)

Roosevelt Island
Lexington Av/63 St

F
F

Lexington Av/53 StEV

14 St/Union Sq
34 St/Herald Sq

456 125 St

123 34 St/Penn Station

1 66 St-Lincoln Center
123 72 St

49 St northbound only

6 51 St

6 Canal St

4567 Grand Central/42 St

456 Brooklyn Bridge/City Hall

BRONX

6 Pelham Bay Park
25

25

Simpson St

BD4

DF

B

161 St/Yankee Stadium
3 Av/149 St

QUEENS

EJZ Sutphin Blvd/Archer Av/JFK Airport

EJZ Jamaica Center (Parsons/Archer)

JM Flushing Av

JMZ Marcy Av

E Jamaica/Van Wyck
M Middle Village/Metropolitan Av

A Howard Beach/JFK Airport

AS Rockaway Park/Beach 116 St

Woodside-61 St

‡7

‡7

Flushing-Main Street
F 21 St/Queensbridge

BROOKLYN

Coney Island/Stillwell Av

Atlantic Av-Pacific St
2345
DM=N=R

=N

Atlantic AvB=Q2345

Utica Av34

Borough Hall (45 northbound only)

(45: platform elevator
accessible only from two doors nearest to conductor)

25

25

Park Pl

For further information on accessible service, call
718-596-8585 from 6AM to 9PM daily.
For information regarding the accessibility status of
elevators and escalators, call 800-734-6772,
24 hours a day.

CS

Church Av

Brooklyn College/Flatbush Av

Franklin Av

Prospect Park

L

L=N=QR=W

=Q

=Q

N=R=W

=R=W

S

Canarsie/Rockaway Pkwy

BDF=N=Q=RVW

S

The subway operates 24 hours a
day, but not all lines operate at all
times. For more information, call our
Travel Information Center (6AM to
10PM) at 718-330-1234. Non-
English-speaking customers call
718-330-4847 (6AM to 10PM).

To show service more clearly, geography
on this map has been modified.
© 2005 Metropolitan Transportation Authority
Design: Michael Hertz Associates, NYC

visit www.mta.info

Key

MTA New York City Transit
Subway in four boroughs,
buses in five boroughs, and the
MTA Staten Island Railway

May 2005

B 4

Full time
service

See Service Guide
below for details about

specific lines

Part time
service

All trains stop
(local and express service)

Local service onlyPart-time line
extension

Free subway transfer

Free out-of-system subway
transfer (excluding single-
ride ticket)

Terminal
Bus or AIRTRAIN to airport

Accessible station

Additional express
service

Normal service

Commuter rail service

6

Statio
n

Name

 A
• C

MTA New York City Subway
with bus, railroad, and ferry connections

6

Police

Regional ferry service is not provided by the MTA, but by a variety of public and private carriers.

Figure 1.1: Clipping of the New York Metro map.

crossings, for instance, should be avoided, as they are misleading. Also,
links should not be too long, as they are hard to follow. And the drawing
should fit on a given medium, e. g., a letter-sized piece of paper.

As the amount of data increases, many visualization techniques in gen-
eral and graph drawing algorithms in particular reach their limits. The
telephone call graph of Germany, for instance, consists of calls between
nearly 90 million phone numbers (counting both the conventional telephone
network and cellular phones) (Statistisches Bundesamt Deutschland, 2004).
Considering that high-end consumer displays nowadays have a resolution
of 1, 920× 1, 200 = 2, 304, 000 pixels, it is obvious that this graph cannot
be visualized as a whole. Even if every phone number would be depicted
with only one pixel, 40 such displays would have to be joined, but still there
would be no space for visualizing the phone calls.

This example admittedly is extreme. Nevertheless, it shows that the
“screen real estate” (Abello and Korn, 2002) is a bottleneck. This becomes
an imporatant issue even for much smaller graphs such as the biochemical
reaction network in an organism. In fact, Michal (1993) depicts approxi-
mately 1, 500 biochemical reactions with about as many chemical substances
(Schreiber, 2001, p. 4) on his famous, mostly hand-drawn wall chart; see Fig-
ure 1.2 for a small clipping of it. Although his drawing already is very
compact, the chart still measures 1.4 m× 1 m. Many more reactions and
substances, however, have been discovered since 1993 when the chart was
published. By the time of writing, databases such as KEGG or EMP list
over 20, 000 entries; see (SRS). Nevertheless, it is estimated that this is only

2

Figure 1.2: Clipping of the biochemical pathway wall chart of Michal (1993) show-
ing part of the citric acid cycle.

a small part of all biochemical reactions in organisms (Schreiber, 2001, p. 5).
The obvious solution for visualizing such large graphs is to show only

a clipping of the whole drawing and to provide a scrolling mechanism to
move the clipped area. However, as only a small portion of the graph is
visible at any time, exploring a large graph bears certain resemblance with
an odyssey. The situation can be improved to some extent by varying also
the scale of the clipped area: one can choose a large scale for an overview
and then zoom into the interesting areas. In order to avoid excessive zoom-
ing, often a permanently visible, large scale overview of the whole drawing
is provided additionally and the clipped area is highlighted within this
overview. The problem, however, is that of losing context. Even with an
additional overview, it is cumbersome to map the elements of the detailed
area to their counterparts in the overview and vice versa. Incidentally, the
difficulty of this task can be observed in everyday life when switching from
a large scale map to a detailed one (of a particular city, for instance).

The main drawback with using different scales is that each drawing has
a uniform scale. Thus, a view either focuses on some area of interest or
shows the overall structure of the drawing, i. e., the context. Fisheye views
(Furnas, 1986; Sarkar and Brown, 1992, 1994; Formella and Keller, 1995)
or hyperbolic views (Lamping and Rao, 1996) combine both, focus and
context, into one drawing. These approaches relinquish the paradigm of one
uniform scale for the whole view: some areas of the drawing are shown at
a large scale while others are shown in detail. More precisely, fisheye views

3

1 Introduction

mimic the imaging behavior of an extremely wide-angle lens, a so-called
fisheye lens. The entire drawing can be explored by moving the focused
area. Although this non-uniform scale leads to distorted images, it has the
advantage that the details are shown within their context.

Such distortion techniques, however, reach their limits if there are simply
too many details. In order to fit the telephone call graph of Germany onto
a contemporary computer display the scale would have to be chosen such
large that everything outside the area of focus would be indistinguishable.
Therefore, one major drawback of these purely geometric approaches is that
they do not reduce the number of details; they only scale them differently.

Instead of choosing a larger scale for a currently uninteresting part, the
overall structure of the graph usually is conveyed better by displaying this
part in abstract form. On a large scale road map of Germany, for instance,
even major cities like Munich or Berlin are depicted as small circles and all
the streets within a particular city are hidden. For the telephone call graph
of Germany, a similar abstraction can be derived from the structure of a
phone number, which basically consists of an area code and the number
itself, e. g., 0851 5090. If, for instance, the subgraph representing the calls
between two numbers in Passau (area code 0851) is not needed in detail,
the entire subgraph can be collapsed into a single meta node labeled 0851.
Calls from a number with a different area code to a number in Passau (or
vice versa) are no longer shown in detail. Rather, they are combined into
so-called derived edges that are attached directly to the respective meta
node, e. g., calls from 07531 884263 to both 0851 5093034 and 0851 5093030
are represented as a single derived edge from 07531 884263 to the collapsed
meta node 0851.

Even if all of the over 5, 000 area codes are collapsed, the resulting abstract
call graph of Germany is still too large. Therefore, this abstraction technique
can be applied recursively, for instance, by grouping the area codes accord-
ing to common prefixes. The meta node for the prefix 085 thus contains,
among others, the meta nodes 0851 (Passau) and 08551 (Freyung). On the
highest level of abstraction, the prefix 08 comprises large parts of Bavaria,
e. g., Munich with all its outskirts, Landshut, and Passau. Considering that
Passau, for instance, has over 50, 000 citizens, the subgraphs consisting of
all phone numbers with the same area code are also too large in general
and thus need to be subdivided. This could be done by grouping the phone
numbers with the same area code according to their geographical location,
e. g., all numbers within the same district. Also, the phone numbers of many
institutions or companies often consist of some base number followed by
an extension, which can be used to group them.

4

While for telephone call graphs this recursive partitioning is given implic-
itly by the structure of the phone numbers, it has to be specified explicitly
for other large graphs. Biochemists already have grouped the reactions in
an organism into larger units, so-called pathways, e. g., the citric acid cycle,
a clipping of which is shown in Figure 1.2, or the biosynthesis of valine,
which is depicted in Figure 1.3. Like in the telephone call graph exam-
ple above, this grouping is carried on recursively, e. g., the biosynthesis of
valine belongs to the metabolism of branched chain amino acids; further-
more, pathways are classified as anabolic, catabolic, or amphibolic. On the
other hand, an elementary reaction often consists of many partial reactions
(Schreiber, 2001, p. 23).

If a pathway like the biosynthesis of valine, which converts pyruvate into
valine in a sequence of four elementary reactions, is not needed in full detail,
it is often abbreviated as one overview reaction (Schreiber, 2001, p. 18) con-
necting the two key substances pyruvate and valine directly; see Figure 1.3.
In BioPath (Brandenburg et al., 2003), which, incidentally, was used to cre-
ate the images in Figure 1.3, this abstraction mechanism plays an important
role: the user can explore the biochemical reactions stored in a database by
iteratively refining overview reactions. If the present drawing shows the
biosynthesis of valine in abbreviated form, the full reaction sequence can be
obtained by clicking the overview reaction.2

In both examples, a large graph is partitioned recursively into a hierarchy
of meaningful subgraphs. In order to reduce the complexity and the size
of the graph, only those subgraphs that are currently needed are shown
in detail, while the others are collapsed, i. e., represented by meta nodes.
In such a graph view the subgraphs in the area of interest are expanded
furthest, whereas those on the periphery are abstracted. This resembles
the fisheye views as regards the concept of providing focus and context
simultaneously. The technique for locally increasing or decreasing the level
of detail, however, is fundamentally different: in a fisheye view this is
done by non-uniform scaling, whereas in a graph view non-uniform levels
of abstraction are used. A lower scale for the focused area in a fisheye

2Although it seems that in this example a subgraph is replaced with a meta edge instead
of a meta node like in the telephone call graph example, this is not the case in the data
model of BioPath. A biochemical reaction in general has more than one reactant and
more than one product and thus essentially is a hyperedge. The standard technique for
modeling hypergraphs as ordinary (bipartite) graphs is to replace every hyperedge with
a new node and ordinary edges from each source to the new node and from the new
node to each target. Therefore, the reactions in the data model of BioPath are also nodes
and are replaced with meta nodes representing the overview reaction; see (Schreiber,
2001, Chap. 5) for a more detailed description of this data model.

5

Figure 1.3: This example of a biochemical pathway (Schreiber, 2001) shows the
biosynthesis of valine both as sequence elementary reactions (left) and as overview
reaction (right). Both drawings have been produced with BioPath (Brandenburg
et al., 2003).

view corresponds to lower level of abstraction in a graph view, i. e., the
subgraphs in this area are expanded further. On the other hand, a larger
scale for the surroundings corresponds to a higher level of abstraction, i. e.,
large subgraphs are collapsed into meta nodes.3

The focus of this work is the visual exploration and navigation of large
hierarchically structured graphs and its hub is the concept of a graph view.
Starting from an abstract view, in which large subgraphs are contracted
into meta nodes, the areas of interest are explored by expanding the corre-
sponding meta nodes within the context of the whole graph, i. e., the level
of abstraction is decreased locally by showing the subordinate subgraphs
of the expanded meta node. Expanding the meta node 08 in a view of the
telephone call graph, for instance, increases the level of detail locally by
showing its subordinate meta nodes, e. g., 085 and 089. Conversely, sub-
graphs that are no longer needed in detail can be collapsed. Compared to
fisheye or hyperbolic views this approach also shows the currently inter-
esting areas in detail, but the surroundings are abstracted, not just scaled
down. Especially for larger graphs, this abstraction mechanism is superior
to scaling because it emphasizes the overall structure of the periphery in-
stead of cluttering it with unnecessary details. On the other hand, visual
navigation with graph views involves some novel, challenging problems
that will be addressed in this work.

First and foremost, there is need for a data structure for hierarchically
structured graphs that efficiently supports the expanding and contracting
of subgraphs in a graph view. Depending on the admissible modifications
of the hierarchy and the graph, Buchsbaum and Westbrook (2000) differen-
tiate between three variants of this graph view maintenance problem: in the
static case, the graph and the hierarchy are both fixed; in the dynamic graph
variant, edges can be inserted and deleted; in the dynamic graph and tree
variant, the graph additionally is subject to node insertions and deletions
and the hierarchy may change through splitting and merging of subgraphs.
Splitting groups part of the subordinate subgraphs of some meta node into
a new meta node; merging is the inverse operation. Suppose, for instance,
that in the aforementioned biochemical pathways example so far only the
whole metabolism of branched chain amino acids has been grouped as a
pathway and now shall be refined further by splitting off the biosynthe-
sis of valine. This means that the substances and reactions involved in
the biosynthesis of valine are assigned to a new meta node that replaces

3Abello et al. (2004) combine both approaches by automatically expanding and collapsing
subgraphs as the user changes the focused area.

7

1 Introduction

them in the metabolism of branched chain amino acids. Buchsbaum and
Westbrook (2000) and Buchsbaum et al. (2000) propose data structures for
both the static and the dynamic graph variant.4 Efficient data structures
that additionally support modifications of the node set were left as an open
problem (Buchsbaum and Westbrook, 2000), which is solved partially in this
work.

In Chapter 2, an efficient data structure for a new variant, dynamic leaves,
is introduced; it is based on the dynamic graph variant, but additionally
allows insertion and deletion of graph nodes, i. e., leaves of the hierarchy.
In contrast to the dynamic graph and hierarchy variant, it lacks splitting
and merging of clusters. Thus it is adequate for dynamic graphs for which
the hierarchical structure is fixed or at least changes infrequently.5 The
hierarchy of our telephone call graph example, for instance, is fixed because
it is derived from the structure of telephone numbers. At the same time, this
graph is highly dynamic as regards insertion and deletion of both nodes and
edges because phone numbers become active or inactive and phone calls
start and end. The classification of biochemical reactions into pathways is
another example: new reactions and substances are discovered frequently,
but it happens relatively seldom that part of the reaction network is grouped
into a new pathway. Previous solutions (Buchsbaum et al., 2000; Buchsbaum
and Westbrook, 2000) are no adequate model for such applications because
they cannot handle graphs with a dynamic node set at all.

A data structure is a necessary precondition for the efficient visual navi-
gation of large hierarchically structured graphs with graph views. On the
other hand, it is equally important that the visual representation of the cur-
rent view is adjusted efficiently after expanding and contracting. Efficiency
usually refers to the time for computing the new drawing, which is indeed
critical in an interactive setting. Measuring only computation time, how-
ever, is not enough, as it neglects the user’s effort to recognize the new
drawing. This effort is influenced not only by the traditional aesthetic cri-
teria of graph drawing, e. g., small area, short edges, or few edge crossings,
but also by dynamic aspects. It is commonly assumed that the user builds
some sort of mental representation of a drawing and that a modification
of the graph is easier to follow if as much as possible is preserved of this
so-called mental map (Misue et al., 1995). The goal of our visualization there-
fore is not only to produce aesthetically pleasing drawings but also to adjust

4In Section 1.2.2, both approaches are described in more detail.
5Note that in theory every hierarchy can be constructed by adding and removing leaves in

the correct order. Therefore, the split and merge operations could be emulated through
a series of leaf operations, but this would not be very efficient.

8

the drawings in a way that makes it is easy to follow the expanding and
contracting of subgraphs.

The dynamic aspects of graph drawing so far have been researched mostly
for ordinary graphs and elementary operations like adding or removing
nodes or edges (Branke, 2001).6 The few exceptions (Huang and Eades, 1998;
Eades and Huang, 2000; Dwyer and Eckersley, 2003) that try to preserve the
user’s mental map in the context of expanding and contracting meta nodes
in graph views employ force-directed approaches. A force-directed layout
algorithm mimics a physical system where the nodes of the graph repel
each other and edges are springs exerting attracting forces. Starting from
some initial drawing, the nodes are moved according the overall forces act-
ing on them until some reasonably stable configuration is found. Therefore,
adjusting a drawing after expanding or contracting with a force-directed al-
gorithm is straightforward: the old drawing simply is used as start configu-
ration. If the old drawing corresponded to some relatively stable state of the
physical system and the graph was modified only locally, it is likely that the
iterative movement converges against a drawing that resembles the old one.

Because of the symmetric nature of the forces, such algorithms are well
suited for undirected graphs. For directed graphs, however, it is often the case
that the majority of edges follows some overall direction that shall be con-
veyed in the drawing. In biochemical reaction networks, for instance, the
directed edges encode the succession of the chemical substances and thus it
is desirable to draw the edges in one preferred direction, e. g., from top to
bottom like in Figure 1.3; other examples are PERT (CPM) charts in project
management or UML diagrams in software engineering. The method of
choice for such directed graphs is layered drawing based on the framework
of Sugiyama et al. (1981). It consists of four phases: first, nodes are dis-
tributed on horizontal levels; second, the edges are normalized; third, the
order of the nodes on each level is improved as to reduce the number of
edge crossings; finally, exact coordinates are assigned to the nodes without
changing the order. Both Sugiyama and Misue (1991) and Sander (1996a,b,
1999) extend and adapt this framework for hierarchically structured graphs,
but the dynamic aspects of expanding and contracting in this context have
not been researched so far. Sugiyama and Misue (1991) mention these op-
erations, though it appears that they implement them by re-applying their
algorithm to the entire graph.

In contrast to this naive approach, our solution, presented in Chapter 3,
is an update scheme for the algorithm of Sugiyama and Misue (1991). It

6In Section 1.3.3 these dynamic aspects of graph drawing are described in more detail.

9

1 Introduction

works on the intermediate results and auxiliary structures of the four phases
of this algorithm with particular emphasis on the locality of the updates:
every expand and contract operation has only a local effect. The drawing
of the new graph essentially is computed on the manipulated subgraph
only. This is a significant improvement for the time consuming phases of
the original algorithm, such as level assignment or crossing reduction. The
update scheme thus is faster than a complete relayout. In fact, experimental
results on randomly generated graphs show that the running time on the
average improves by a factor between two and ten depending on the density
of the graph; see Section 3.4. The user’s mental map is preserved by keeping
all nodes not involved in the expanding or contracting on their former levels
and in the same relative order.

In Chapter 4, both our data structure and the update scheme for the
algorithm of Sugiyama and Misue (1991) are combined into an appropriate
software architecture for the visual navigation of hierarchically structured
graphs. This architecture already has been put into practice in the form of a
proof-of-concept implementation (Pfeiffer, 2005; Pröpster, 2005)

In order to ensure its reusability, the data structure is coupled only loosely
with the visualization and the user interface using the well-known Model-
View-Controller (MVC) pattern (Buschmann et al., 1996). For each hierarchi-
cally structured graph, the proposed architecture supports arbitrarily many
views, which are notified about modifications of the base graph through an
Observer pattern (Gamma et al., 1995, pp. 293–303). The user thus can have
many windows showing different views of the graph.

Although our update scheme already preserves the user’s mental map
well, the transition between the drawings before and after expanding and
contracting is much easier to follow if it is animated. Therefore, the pro-
posed architecture also supports animation, though only the straightfor-
ward, yet remarkably effective, linear interpolation has been implemented
so far. Since the data structure, the drawing style, and the animation style
probably will be subject to variations and improvements, particular empha-
sis is laid on the flexibility and extensibility in these regards.

After this motivation and high-level overview of efficient visual naviga-
tion of hierarchically structured graphs and the challenges linked with it,
we first put the discussion on a more formal basis in Section 1.1. In Sec-
tion 1.2, we state the problem of graph view maintenance formally and
briefly describe its previous solutions. Section 1.3 introduces into graph
drawing in general and layered drawing in particular. Furthermore, our
notion of preserving the mental map for layered drawings of hierarchically
structured graphs is presented in the context of previous approaches. Fi-

10

1.1 Terminology

nally, we briefly describe other interactive editing and exploration tools and
compare them to our architecture in Section 1.4.

1.1 Terminology

Definition 1.1. A directed graph, short digraph, G = (V, E) consists of a set graph
of nodes V and a set of directed edges E ⊆ V × V. In an undirected graph,
the edges are unordered sets instead of ordered pairs, i. e., E ⊆ P2(V), where
P2(V) denotes the set of all subsets of V with exactly two elements.

An edge (u, v) ∈ E of a digraph G = (V, E) is an incoming edge of node
v and an outgoing edge of node u; both u and v are incident with the edge
(u, v). A path is a sequence of nodes u1, u2, . . . , uk such that (ui, ui+1) ∈ E
for 1 ≤ i < k. For U ⊆ V, the set of induced edges is defined as E[U] =
{(u, v) ∈ E | u, v ∈ U}; the digraph G[U] = (U, E[U]) is called a (node)
induced subgraph of G.

Definition 1.2. A rooted tree is a digraph T = (V, E) with one distinguished tree
node root(T), the root of T, such that for every other node u ∈ V \ {root(T)}
there is an unique path from root(T) to u.

From the above definition it follows that every non-root node v ∈ V \
{root(T)} in a tree T = (V, E) has exactly one incoming edge (u, v); u is
called the parent of v and denoted parent(v); conversely, v is a child of u. Let
children(v) denote the set of all children of a node v ∈ V; a node without
children is a leaf , whereas the others are referred to as internal nodes. The
descendants of v, desc(v), are all nodes u such that there is a path from v to
u. Conversely, a node u on the unique path from root(T) to v is said to be
an ancestor of v. Note that v is both an ancestor and a descendant of itself.
If neither u is a descendant of v nor v is a descendant of u, i. e., u 6∈ desc(v)
and v 6∈ desc(u), the nodes u and v are termed unrelated. The subtree rooted
at a node v is the subgraph of T induced by desc(v), i. e., T[desc(v)] =
(desc(v), E[desc(v)]). The depth of v, depth(v), is the number of edges on
the path from root(T) to v. This implies that depth(root(T)) = 0. The depth
of the entire tree T is defined as depth(T) = maxv∈V depth(v). The height
of v, height(v), is the depth of the subtree rooted at v.

Definition 1.3. A compound digraph D = (V, E, F) consists of nodes V, compound
(di-)graphdirected inclusion edges E, and directed adjacency edges F. The inclusion

digraph T = (V, E) is a rooted tree, and no adjacency edge connects a
node to one of its descendants or ancestors, i. e., for every adjacency edge

11

1 Introduction

Figure 1.4: A compound digraph; the
dashed edges form the inclusion tree;
the solid ones are adjacency edges.

Figure 1.5: The same compound di-
graph as in Figure 1.4, but the inclusion
tree is depicted by the inclusion of the
dashed rectangles.

(u, v) ∈ F, u and v are unrelated in T. If the adjacency edges are undirected,
D is called a compound graph.

Figure 1.4 shows an example of a compound digraph: the dashed edges
form the inclusion tree and the solid ones are adjacency edges. Figure 1.5
shows an alternative method for drawing compound (di-)graphs: the leaves
and the internal nodes are drawn as circles and rectangles and the inclusion
tree is depicted through their geometric inclusion.

Besides compound (di-)graphs, there are other concepts for extending
graphs with a hierarchical structure. Lengauer and Wanke (1988) describe
a large graph in form of a special context-free graph grammar7. They define
a hierarchical graph Γ = (G1, . . . , Gk) as a sequence of ordinary graphs. The
nodes of each Gi are subdivided into three classes: pins, terminals, and non-
terminals. Each non-terminal v in Gi is associated with exactly one graph Gj
with 1 ≤ j < i, which represents the production replacing v with Gj. The
neighbors of each non-terminal v are labeled with the pins of the associated
graph Gj, which encodes how to embed Gj within Gi after v has been re-

7Graph grammars (Rozenberg, 1997) can be seen as the extension of context-free word
grammars to graphs. In a word grammar non-terminal symbols are replaced with a
word consisting of terminal and non-terminal symbols, whereas in a graph grammar
a non-terminal node is replaced with a graph that contains terminal and non-terminal
nodes. The main difference, however, is that a production in a graph grammar needs
additional embedding rules: The non-terminal node on the left side of the production in
general has some incident edges and the embedding rules describe how these edges are
inherited to the nodes of the right side.

12

1.1 Terminology

placed. As every non-terminal has only one production, the language of
this graph grammar has only one word, i. e., only one graph.8 Thus, the
derivation tree can also be interpreted as a hierarchical decomposition of
this graph similar to the inclusion tree of a compound (di-)graph. As iden-
tical subgraphs need only be listed once, a hierarchical graph is a succinct
representation of an ordinary, large graph, which can be exploited to speed-
up algorithms for classical graph problems such as connectivity (Lengauer
and Wanke, 1988).

Layout graph grammars (Brandenburg, 1990, 1994; Hickl, 1994) extend or-
dinary graph grammars by local layout specifications for the right sides of
each production. The drawing of a graph is produced by applying the ap-
propriate productions together with the specified layout instructions. Thus,
the purpose of layout graph grammars is the layout of a (possibly infinite)
class of graphs through the local layout of the (finite) set of productions.

Harel (1988) introduces the general concept of a higraph for hierarchically
structuring, for instance, entity-relationship diagrams used in the concep-
tual specification of databases or state-transition diagrams for modeling the
behaviour of reactive systems. The latter appears to be the most important
application of higraphs considering that according to Harel (1988) higraphs
actually evolved in the process of trying to formulate the underlying graph-
ical principles used in statecharts, one particular concept for the design and
specification of complex reactive systems introduced earlier by Harel (1987).
A higraph consists of recursively nested nodes, so-called blobs, and edges
connecting them. The nesting has to be acyclic, but not necessarily tree-like
as in compound (di-)graphs, i. e., a blob may be contained in more than one
superordinate blob. The edges may connect arbitrary blobs and thus are not
restricted to unrelated nodes as in compound (di-)graphs.

Cigraphs as introduced by Lai and Eades (1996) are closely related to
compound (di-)graphs. A cigraph C = (r, I, W) consists of a single root
node r, a possibly empty set of sub-cigraphs I, and a set of (adjacency) edges
W. This recursive definition results in a tree-like nesting of cigraphs that is
similar to the inclusion hierarchy of compound (di-)graphs. Also, edges are
allowed only between unrelated nodes. Compared to compound (di-)graph
essentially the only difference is that the set of edges is scattered across the
various sub-cigraphs. More precisely, an edge connecting cigraphs Cv and
Cu always belongs to the cigraph that is the nearest common ancestor of Cv

and Cu in the inclusion hierarchy.

8A general graph grammar can produce more than one graph; its language can even be
infinite.

13

1 Introduction

Clustered graphs, which were introduced by Feng et al. (1995), are another
popular concept for extending graphs with a hierarchical structure. A clus-
tered graph C = (G, T) consists of an ordinary base graph G and a tree T
such that the leaves of T are exactly the nodes of the base graph. Each node
ν of T thus represents a subset V(ν) of the nodes of the underlying graph
G defined by the leaves of the subtree rooted at ν. Hence, T describes the
inclusion relation between these clusters. Since the nodes of the underlying
graph are the leaves of the inclusion tree T, clustered graphs can have ad-
jacency edges only between leaves, whereas the other models allow edges
between any pair of unrelated nodes (compound (di-)graphs and cigraphs)
or even between any pair of nodes (higraphs).

Schreiber (2001, Sect. 5.3) adapts the general concept of a clustered graph
to the special case of hierarchically structured biochemical reaction net-
works, which are essentially hypergraphs, i. e., each reaction is a hyperedge
connecting the participating chemical substances. The standard technique
for modeling a hypergraph as a bipartite graph is the following: every hy-
peredge is replaced with a new node and all sources and targets of the
hyperedge are connected appropriately with it. As this results in two differ-
ent types of nodes, the inclusion tree built on top of such a bipartite reaction
network has to meet additional requirements in order to ensure that abstrac-
tions of the network (defined in terms of the clustering given by the inclu-
sion tree) are again correct reaction networks; see Schreiber (2001, Sect. 5.3).

Shieh and McCreary (1995), McCreary et al. (1998), and Shieh and Mc-
Creary (2000) use a clan-based decomposition for drawing directed acyclic
graphs (DAG). They show that every DAG can be decomposed into a tree
of special subgraphs, so-called clans, such that the leaves are the nodes of
the DAG and the internal nodes are complex clans, which are termed ei-
ther series or parallel. Although this parse tree corresponds to the inclusion
tree of other models, it is the result of a graph-theoretic decomposition
and as such it is determined by the underlying graph as opposed to the
independent inclusion trees in compound (di-)graphs or clustered graphs.
Messinger et al. (1991) also partition a large digraph into subgraphs as part
of a divide-and-conquer strategy for automatically drawing digraphs. This
decomposition, however, is not carried on recursively, i. e., the implicitly
generated inclusion tree has only depth 1.

The hub of visual navigation in this work is the concept of a graph view,
which can be seen as an abstraction of a compound (di-)graph that is too
large to be displayed as a whole. Since a graph view also will be a com-
pound (di-)graph, we first introduce the notion of an upper subtree, which
describes the requirements of a view’s inclusion tree.

14

1.1 Terminology

Definition 1.4. An upper subtree T[U] of a tree T = (V, E) is a subgraph upper subtree
induced by U ⊆ V such that

◦ root(T) ∈ U,
◦ for all u ∈ U \ root(T): parent(u) ∈ U,
◦ and for all u ∈ U: either children(u) ∩U = ∅ or children(u) ⊆ U.

Essentially, the first two conditions imply that an upper subtree T[U] of a
tree T = (V, E) is indeed a tree with the same root as T. The third condition
is important only for our notion of a graph view, which will be an upper
subtree of the inclusion tree together with appropriate adjacency edges. The
darker shaded nodes of the compound digraph in Figures 1.6 and 1.8 induce
an upper subtree of the inclusion tree.

Alternatively, an upper subtree of T = (V, E) can be characterized by
pruning T. For a node v ∈ V, pruning T at v means to remove all subtrees
rooted at children of v. In other words, after pruning T at v, v is a leaf.

Lemma 1.5 Let T = (V, E) be a tree and U ⊆ V such that T[U] also is a tree.
Then T[U] is an upper subtree of T if and only if T[U] can be constructed
from T by a sequence of pruning operations.

Proof. Since T is an upper subtree of itself and pruning an upper subtree of
T does not violate any of the conditions in Definition 1.4, it follows by
induction that any subtree that is constructed from T by a sequence of
pruning operations is an upper subtree of T. Conversely, let T[U] be an
upper subtree of T according to Definition 1.4. Obviously, T[U] is the result
of pruning T at each leaf of T[U]. �

For v ∈ V and U ⊆ V such that root(T) ∈ U, let ancU(v) denote the
nearest ancestor of v in U, i. e., the ancestor with largest depth in T. Note that
ancU(v) is well-defined for any v ∈ V, because root(T) ∈ U. The following
lemma gives yet another characterization of an upper subtree.

Lemma 1.6 Let T = (V, E) be a tree and U ⊆ V such that T[U] also is a tree.
The T[U] is an upper subtree of T if and only if root(T) ∈ U and ancU(v) is
a leaf in T[U] for every v ∈ V.

Proof. If T[U] is an upper subtree of T, then root(T) ∈ U by definition.
Suppose that ancU(v) is an internal node of T[U] for some v ∈ V; hence, it
has at least one child in U and thus all children are in U because of the third
condition of Definition 1.4. However, this is not possible because ancU(v)
is the nearest ancestor of v in U. Conversely, the same argument shows
that if root(T) ∈ U and ancU(v) is a leaf in T[U] for every v ∈ V then

15

1 Introduction

either children(u) ⊆ U or children(u) ∩U = ∅. Since T[U] is a tree and
root(T) ∈ U, it also follows that parent(u) ∈ U for each u ∈ U. �

As already mentioned, we define a graph view as an upper subtree of
the inclusion tree T = (V, E) of a compound digraph9 D = (V, E, F) with
“appropriate” adjacency edges. The adjacency edges in a view should also
represent adjacency edges in D between nodes that have been cut off in the
course of pruning T. This means that adjacency edges in a view are not
necessarily edges of D, but rather derived edges in the following sense:

Definition 1.7. For a compound digraph D = (V, E, F), two unrelated nodesderived edge
u, v ∈ V are connected by a derived edge if and only if there are nodes
u′ ∈ desc(u) and v′ ∈ desc(v) such that u′ and v′ are connected by an
adjacency edge (u′, v′) ∈ F.

A derived edge thus can be seen as a representative of all the edges between
descendants of u and v.

Now all necessary concepts have been introduced in order to define our
notion of a graph view:

Definition 1.8. A view of a compound digraph D = (V, E, F) is a compoundview
digraph D[U] = (U, E[U], F〈U〉) determined by the nodes U ⊆ V such that
T[U] = (U, E[U]) is an upper subtree of the inclusion tree T = (V, E). Two
nodes u, v ∈ U, u 6= v, are connected with a derived (adjacency) edge
(u, v) ∈ F〈U〉 if and only if there exists an adjacency edge (u′, v′) ∈ F such
that u = ancU(u′) and v = ancU(v′).

Intuitively, a view is constructed by collapsing the subtree (in T) of every
leaf (in T[U]) into a single meta node. As our above definition allows de-
rived adjacency edges only between different nodes, an adjacency edge
(u′, v′) ∈ F such that ancU(u′) = ancU(v′), i. e., both nodes lie in the same
collapsed subtree, is simply hidden. On the other hand, an adjacency edge
(u′, v′) with u = ancU(u′) 6= ancU(v′) = v is represented by the derived
edge (u, v) ∈ F〈U〉. Note that a derived adjacency edge (u, v) ∈ F〈U〉
stands for all original adjacency edges connecting the subtrees (in T) rooted
at u and v. Figure 1.7 shows an example of a view induced by the darker
shaded nodes of the compound digraph in Figure 1.6. Figure 1.9 shows the
same view as an inclusion diagram.

Views were first introduced by Eades and Feng (1996): for a clustered
graph, a view at level i is an ordinary graph consisting of all nodes at

9We restrict the discussion to compound digraphs; unless explicitly mentioned, the pre-
sented results can easily be transferred to undirected compound graphs.

16

Figure 1.6: The darker shaded nodes of
this compound digraph induce an upper
subtree of the inclusion tree.

Figure 1.7: The view consisting of the
darker shaded nodes of the compound
digraph in Figure 1.6.

Figure 1.8: The same compound di-
graph as in Figure 1.6, but the inclusion
tree is depicted by the inclusion of the
dashed rectangles.

Figure 1.9: The same view as in Fig-
ure 1.7 with the inclusion hierarchy
depicted as an inclusion diagram.

1 Introduction

height i in the inclusion tree and their derived edges. The inclusion tree
has to be normalized such that each inclusion edge (parent(u), u) satisfies
height(parent(u)) = height(u) + 1, which can easily be done by inserting
dummy nodes. The abridgments of Huang and Eades (1998) and later the
views of Buchsbaum and Westbrook (2000) generalize this notion: the nodes
of a view no longer need to have the same height as long as the correspond-
ing subtrees partition the set of leaves. This makes expanding and contract-
ing of single nodes possible, whereas with the views of Eades and Feng
(1996) these operations were possible only for the entire layer. Schreiber
(2001, Sect. 5.3) uses the views of Buchsbaum and Westbrook (2000) for ex-
ploring hierarchically structured reaction networks through expanding and
contracting of nodes.

Definition 1.8 generalizes the one of Buchsbaum and Westbrook in two
ways: first, it uses compound digraphs instead of clustered graphs as un-
derlying model, and second, the views of Buchsbaum and Westbrook are
ordinary graphs, whereas ours are again compound digraphs. Incidentally,
this makes them similar to the abridgments of Huang and Eades (1998) that
are clustered graphs again. In other words, Definition 1.8 restricted to clus-
tered graphs is equal to the one Huang and Eades and the leaves of one of
our views together with the derived edges yield the corresponding view of
Buchsbaum and Westbrook.

1.2 Graph View Maintenance

Views can be seen as an abstract representation of the underlying compound
digraph. By Definition 1.8, the level of abstraction is non-uniform: some
areas of interest can be displayed in more detail than the remainder. Al-
though this abstraction is useful by itself, its true power is unleashed when
the areas of interest can be chosen interactively. In other words, the view
can be refined or coarsened locally when areas become more or less inter-
esting. In this regard, a view can be compared to the well known tree views
of file systems: initially only the topmost layer of folders is shown and the
folders of interest can be expanded within the view.10

10Of course, there are no edges between the elements of a tree view, but the same metaphor
of expanding and contracting locally is used.

18

1.2 Graph View Maintenance

1.2.1 Problem Definition

Given a compound digraph D = (V, E, F) and a view D[U], the graph view
maintenance problem is to efficiently perform the following operations on
D[U]:

expand(v) where v is a leaf in T[U]: refines the view at v, i. e., the result
is the view D[U′] given by the nodes U′ = U ∪ children(v); see Fig-
ures 1.10 and 1.11 for an example.

contract(v) where children(v) are leaves in T[U]: coarsens the view at
v, i. e., the result is the view D[U′] given by the nodes U′ = U \
children(v); this is the inverse of expand(v) in D[U′].

Note that expanding and contracting are well-defined, i. e., the set U′

indeed defines a correct view (cf. Definition 1.8). This is the case if and only
if T[U′] is an upper subtree of T. Since D[U] is a correct view of D, i. e., T[U]
is an upper subtree of T, appending children(v) to a leaf v (in T[U]) does
not violate any of the conditions for an upper subtree (cf. Definition 1.4).
Contracting is the same as pruning T[U] at v, which always results in an
upper subtree by Lemma 1.5.

Apart from this static case, there are three more dynamic variants of the
graph view maintenance problem: in the dynamic graph variant, only edges
can be inserted and deleted; in the dynamic leaves variant, also leaves of
the inclusion tree can be inserted and deleted; in the dynamic graph and
tree variant the hierarchy additionally may change through splitting and
merging of subgraphs. In other words, these variants support some or all
of the following operations; see Table 1.1.

newEdge(u, v) where u, v ∈ V are unrelated: adds a new adjacency edge
(u, v) to F.

deleteEdge(u, v) where (u, v) ∈ F: removes adjacency edge (u, v) from F.
newLeaf(u) where u ∈ V: adds a new node v to V and a new inclusion

edge (u, v) to E, i. e., v becomes a child of u in the inclusion tree.
deleteLeaf(v) where v is a leaf in the inclusion tree: removes v from V and

the inclusion edge (parent(v), v) from E.
split(u, N) where u ∈ V and children(u) = N ∪̇ R: inserts a new node

v between u and N into the inclusion tree, i. e., children(v) = N,
parent(v) = u, and children(u) = R ∪ v; see Figures 1.12 and 1.13
for an example.

merge(v) where v ∈ V and v is not the root of the inclusion tree T: v is
deleted from V and its children are attached directly to parent(v); see

19

1 Introduction

Figures 1.14 and 1.15 for an example. Note that this is the inverse of
split(parent(v), N), where N are v’s designated children.

Any compound digraph can be constructed from scratch with an appro-
priate sequence of newLeaf and newEdge operations. Using also the inverse
operations, i. e., deleteLeaf and deleteEdge, it follows that any compound
digraph can be transformed in any other by an appropriate sequence of
these four primitives. From this point of view, the operations split and
merge are unneccessary. In fact, both can be simulated by the four primi-
tive operations: for merging a node v, first the whole subtree of v with all
its incident edges is deleted bottom-up and then rebuilt top-down without
v, i. e., the former children of v are attached directly to parent(v); split is
simulated analogously. Since this amounts to quite a lot operations and
thus tends to be inefficient, it seems to be worthwhile to consider split and
merge independently of the other operations.11

Definition 1.9. Let (u, v) ∈ F〈U〉 be a derived edge in a view D[U] =contracted edge
expanded edges (U, E[U], F〈U〉) such that v is a leaf in T[U] and let D[U′] = (U′, E[U′], F〈U′〉)

be the view after expanding v. The expanded edges of (u, v) with respect to
v are denoted by E((u, v), v) = {(u, v′) ∈ F〈U′〉 | v′ ∈ children(v)}. For
an expanded edge (u, v′) ∈ E((u, v), v), the edge (u, v) is called the corre-
sponding contracted edge. The definition for expanding u instead of v is
symmetrical.

In Figure 1.10, for instance, only one derived edge is incident with the
node to be expanded. As shown in Figure 1.11, this edge generates two
expanded edges.12 Chapter 2 will show that the problem of efficiently per-
forming an expand(v) operation on a view essentially is dominated by the
problem of finding the expanded edges of every derived edge (u, v) or
(v, u).

1.2.2 Previous Solutions

Although the operations expand and contract have been introduced to-
gether with compound digraphs by Sugiyama and Misue (1991), data struc-
tures to support them efficiently have been considered only recently. Buchs-
baum and Westbrook (2000) stated the problem (for clustered graphs) for-
mally and described its variations except for the dynamic leaves variant,

11Note that conversely newLeaf(u) and deleteLeaf(u) can be implemented as split(u, ∅)
and merge(u), respectively.

12We will omit the “with respect to v” whenever the expanded node is clear from the context.

20

Figure 1.10: View of the compound
graph in Figure 1.8 before expanding
the highlighted node.

Figure 1.11: Expanding means to insert
children of the highlighted node with
appropriate derived edges.

Figure 1.12: The compound digraph be-
fore splitting off the highlighted nodes.

Figure 1.13: Splitting inserts a new node
between the selected nodes and their
former parent.

Figure 1.14: The compound digraph
before merging the highlighted node.

Figure 1.15: Merging removes the se-
lected node and attaches its children
directly to its parent.

1 Introduction

Table 1.1: Operations supported in the four variants of the graph view maintenance
problem.

ex
p
an

d

co
n
tr
ac

t

n
ew

E
d
ge

d
el
et
eE

d
ge

n
ew

L
ea

f

d
el
et
eL

ea
f

sp
li
t

m
er

ge

Static × ×
Dynamic graph × × × ×
Dynamic leaves × × × × × ×
Dynamic graph and hierarchy × × × × × × × ×

which has been introduced in (Raitner, 2004c). The solution proposed by
Buchsbaum and Westbrook (2000), however, is rather eager: all possible de-
rived edges are calculated in advance and linked appropriately in order to
provide both expand and contract in optimal time, i. e., linear in the num-
ber of nodes and edges that are modified. As this approach is quite space-
intensive, they improve it by employing a well-known tree compression
technique of Harel and Tarjan (1984) to reduce the depth of the inclusion
tree and thus the number of potential derived edges. Insertion and dele-
tion of edges is also supported, yet an efficient data structure for the more
dynamic variants was left as an open problem.

Another solution for both the static and the dynamic graph variant is
described in Buchsbaum et al. (2000). They express the graph view main-
tenance problem (for clustered graphs) as a special case of range searching
over tree cross products. A tree cross product consists of hyperedges connect-
ing the nodes of d disjoint trees T1, . . . , Td. In this context, range searching
means to determine all hyperedges connecting the subtrees of a given set of
tree nodes (u1, . . . , ud). Using two identical copies of the inclusion tree of a
clustered graph as T1 and T2, the problem of graph view maintenance can be
described as a two-dimensional tree cross product. This solution also allows
contracting in optimal time. With an additional factor of log log n (where n
is the number of nodes of the clustered graph), expanding becomes slightly
more inefficient compared to the eager approach of Buchsbaum and West-
brook (2000). Again, inserting and deleting edges is supported efficiently,
but the set of nodes is fixed, leaving the more dynamic variants as open
problems.

22

1.3 Visual Navigation

1.2.3 Dynamic Tree Cross Products

In Chapter 2, the solution of Buchsbaum et al. (2000) for range searching
over tree cross products is generalized as regards insertion and deletion of
leaves in any of the trees T1, . . . , Td that form the tree cross product. Us-
ing basically the same modeling as Buchsbaum et al. (2000), this yields a
solution for the dynamic leaves variant of graph view maintenance (for com-
pound digraphs). The extra cost for this dynamization is roughly a factor of
O(log n/log log n), where n is the number of nodes of the compound digraph.
Our approach thus partially solves an open problem of Buchsbaum and
Westbrook (2000), but an efficient data structure for the dynamic graph and
hierarchy variant, i. e., with splitting and merging of clusters, still remains
an open problem.

1.3 Visual Navigation

As our goal is an interactive editor for compound (di-)graphs that supports
visual exploration through expanding or contracting, we also have to be con-
cerned with the adequate visualization of compound (di-)graphs. The field
of graph drawing, to which this problem naturally belongs, has matured
over the last decades, which is manifested in several books (Kaufmann and
Wagner, 2001; Di Battista et al., 1998) and in a wealth of graph drawing
software (see the book by Jünger and Mutzel (2004)). Although the major-
ity of results in this field consider only ordinary graphs, the more complex
graph models such as clustered graphs or compound (di-)graphs have been
studied as well.

1.3.1 Drawing Ordinary Graphs

In its most basic formulation, graph drawing means to map the nodes of
a graph to points in the two-dimensional plane and to connect them with
straight lines representing the edges, which is why this drawing convention
is referred to as straight-line. An obvious generalization is to draw the edges
as a sequences of straight-line segments, i. e., as polylines.

While drawing conventions specify the boundary conditions that must
be fulfilled always, a “good” drawing also complies with certain aesthetic
criteria such as small area, short edges, few edge crossings, or few edge
bends; see (Fleischer and Hirsch, 2001) for a more detailed overview. Since
most of these criteria conflict, graph drawing algorithms have to find a
suitable balance between them. To this end, it has been shown empirically

23

1 Introduction

(Purchase et al., 1997; Purchase, 1998) that both minimizing edge crossings
and minimizing edge bends significantly improve human understanding.

Various drawing styles have been proposed in the literature, among which
methods using some sort of physical analogy have become relatively popu-
lar for three reasons according to Brandes (2001, p. 71):

First of all, they are very intuitive because layout is related to
the everyday experience of the surrounding physical world. Sec-
ondly, their basic instances are comparatively easy to under-
stand and to program. The threshold to get started is thus very
low. And finally, they often yield fairly satisfactory results on
medium-sized graphs up to around 50 vertices.

In force-directed algorithms (Eades, 1984), for instance, nodes repel each
other while edges are interpreted as springs13 exerting attracting forces on
the nodes they connect. The algorithm then iteratively moves some nodes
according to the overall force acting on each of them until a reasonably
stable configuration is found. Instead of moving the nodes to reduce the
forces locally, it has also been attempted to reduce the internal energy of the
entire physical system (Kamada and Kawai, 1988). See (Brandes, 2001) for
a more detailed discussion of graph drawing methods based on physical
analogies.

Due to the symmetric nature of the forces along the edges, force-directed
algorithms are best suited for undirected graphs. For general digraphs, on
the other hand, layered drawings have become popular14. In this drawing
style, it is assumed that the majority of the edges follows some overall
direction that shall be emphasized by drawing as many edges as possible
in one specific direction, e. g., form top to bottom. Nearly all algorithms
for layered drawings are somehow based on the classical four-step method
described in the seminal paper of Sugiyama et al. (1981). In its first step, the
cycle removal, the digraph is made acyclic by temporarily reversing as few
edges as possible. (At the end of the whole algorithm the affected edges
are reversed again.) It follows the layer assignment in which the nodes are
distributed on horizontal layers such that all edges point downward. Often
the following steps assume that edges occur only between adjacent layers,
which is why edges spanning more layers, so-called long-span edges, are
broken up by inserting dummy nodes on the spanned layers. In the crossing
reduction step, the order of the nodes on every layer is determined such that

13This is why such algorithms often are referred to as spring embedders.
14As Bastert and Matuszewski (2001) point out, most graph drawing tools provide an im-

plementation of this drawing style.

24

1.3 Visual Navigation

the number of edge crossings is kept small. The final coordinate assignment
step calculates real coordinates within this ordering such that, for instance,
nodes are distributed evenly and balanced among their neighbors and long
span edges are kept as straight as possible. For a more comprehensive
overview of layered drawings, see (Bastert and Matuszewski, 2001).

Besides these general purpose graph drawing methods, there also exist al-
gorithms to satisfy the specific needs of restricted graph classes such as trees
or planar graphs; see (Müller-Hahnemann, 2001) and (Weiskirchner, 2001),
respectively. Especially for planar graphs, not only straight-line drawings
but also orthogonal drawings have been studied a lot. One major motivation
for this drawing style has been to improve the angular resolution of a draw-
ing, which is defined as the smallest angle that two edges form at a common
node. In an orthogonal drawing, a good angular resolution is achieved by
drawing all edges as axis-parallel paths; see (Eiglsperger et al., 2001) for a
more detailed overview.

1.3.2 Drawing Hierarchically Structured Graphs

Drawing clustered graphs or compound (di-)graphs is more complicated
because of the additional inclusion hierarchy. One viable solution would be
to use an additional dimension. The three-dimensional drawing style for
clustered graphs proposed by Eades and Feng (1996), for instance, draws
the underlying ordinary graph in two dimensions and uses the third one
for the hierarchy.

In contrast to these multilevel drawings, in which both the inclusion tree
and the underlying graph are equally visible, most drawing algorithms for
compound (di-)graphs or clustered graphs—especially two-dimensional
ones—emphasize the underlying graph by drawing the inclusion tree as
nested regions. In other words, the inclusion edges are not drawn explicitly;
rather, they are visualized through the geometric nesting of the correspond-
ing regions. As this complicates the recognition of the inclusion hierarchy,
most drawing algorithms use very simple cluster regions such as rectangles
or circles.

More formally, the drawing conventions for the inclusion hierarchy of
this nested drawing style are the following:

(ND1) Every node is drawn as a two-dimensional region, e. g., as an axis-
parallel rectangle.

(ND2) The region of every non-root node is entirely contained within the
region of its parent.

(ND3) The regions of unrelated nodes are disjoint.

25

1 Introduction

Nearly all graph drawing styles for ordinary graphs have been extended to
nested drawings of clustered graphs or compound (di-)graphs. Besides
force-directed approaches (Huang and Eades, 1998; Huang et al., 1998;
Eades and Huang, 2000), which basically add additional forces to keep
a node within its parent’s region, the notion of planarity also has been
extended to clustered graphs and various drawing algorithms for such clus-
tered planar graphs have been proposed (Feng et al., 1995; Eades et al., 1996a;
Eades and Feng, 1997; Eades et al., 1999; Nagamochi and Kuroya, 2003).
Layered drawings also have been considered: Sugiyama and Misue (1991)
and later Sander (1996a,b, 1999) adapt the classical four-step algorithm of
Sugiyama et al. (1981) to general compound digraphs, whereas the frame-
work of Castelló et al. (2000, 2002), which is also based on (Sugiyama et al.,
1981), is specifically tailored to statecharts. Bertault and Miller (1999) present
a general framework for drawing compound digraphs that can be param-
eterized with drawing algorithms for ordinary graphs: for each internal
node, a suitable drawing algorithm for the subgraph induced by its chil-
dren can be chosen. Brockenauer and Cornelsen (2001) give a more detailed
overview of drawing hierarchically structured graphs.

1.3.3 Dynamic Aspects of Graph Drawing

In our chosen scenario the user explores a large compound (di-)graph by
iteratively refining the interesting nodes in an initially abstract view. Con-
versely, the subgraphs that are not—or no longer—needed in detail can be
contracted. An efficient data structure for the problem of graph view main-
tenance, doing all the work in the background, is a necessary precondition
for this approach, but in our interactive setting its visual aspects must not
be neglected.

These dynamic aspects of graph drawing have been researched so far
mostly for ordinary graphs and elementary operations like adding or re-
moving nodes or edges. Even in this simpler setting, the obvious solution
of re-applying a standard layout algorithm does not yield the desired result
as Misue et al. (1995) point out:

Most automatic layout facilities take a purely combinatorial de-
scription of a graph and produce a layout of the graph; these
methods are called ’layout creation’ methods. For interactive
systems, another kind of layout is needed: a facility which can
adjust a layout after a change is made by the user or by the ap-
plication. (. . .) The use of a layout creation method for layout
adjustment may totally rearrange the layout (. . .).

26

1.3 Visual Navigation

Figure 1.16: Both the middle and the right drawing are possible after expanding the
darker shaded node in the left drawing. It is, however, much easier to keep track of
the expanding if the middle one follows left drawing instead of the right one.

The middle and the right drawing15 in Figure 1.16, for instance, are both
possible layouts after the shaded node in the left drawing has been ex-
panded. It is, however, much easier to keep track of the common nodes
and edges if the left drawing of Figure 1.16 is followed by the middle one
instead of the right one. This holds especially when the drawings are not
presented side by side as in Figure 1.16, but sequentially as in an interactive
exploration tool.

Besides the traditional aesthetic criteria for drawing graphs nicely, e. g.,
few edge crossings, few bends, small area, or short edges, it is therefore
important that the user is able to follow the expansion or contraction of a
node (or any other modification) visually. This is only possible if the effort
to re-familiarize with the new drawing is reasonably small. More precisely,
it is assumed that the user builds some sort of mental representation of the
drawing, a so-called mental map. Since this is a demanding task, taking a
considerable amount of time for larger graphs, the expanding or contracting
should preserve as much of the user’s mental map as possible. In other
words, we have to find a good compromise between the usual aesthetic
criteria and the preservation of the user’s mental map.

Various approaches have been made to capture the nebulous concept
of a mental map more formally. One straightforward, but also drastic,
method for preserving the mental map is to prohibit any movement of
nodes (Branke, 2001). Although this almost perfectly preserves the mental
map, it is not flexible enough: it necessarily leads to unpleasant drawings

15As opposed to the majority of drawings in this work, those in Figure 1.16 are not hand-
drawn. Rather, they have been created automatically with a proof-of-concept implemen-
tation of our layout algorithm (Pröpster, 2005), which also is an important component of
an interactive editing and exploration tool (Pfeiffer, 2005); see Chapter 4.

27

1 Introduction

with, for instance, many edge crossings. For expanding a node, fixing the
node positions is impracticable altogether because of the additional space
needed for the new children. Even if the nodes in the vicinity of the change
are allowed to move, as suggested in Böhringer and Paulisch (1990), this
approach still is too inflexible in general.

Therefore, most authors measure the similarity of the two drawings with
some sort of distance metric and then try to find a reasonable balance be-
tween the common aesthetic criteria and this additional similarity measure.
Such a metric can be based on the absolute coordinates of the nodes. The
similarity then is measured as the sum of the Eucledian distances (or some
other metric for the two-dimensional plane) that the nodes were moved
as, for instance, in (Bridgeman and Tamassia, 1998) or (Lyons et al., 1998).
However, Branke (2001) mentions the following drawback:

A general problem (. . .) is that operations like translation, rota-
tion or scaling will clearly yield large dissimilarity values and
indicate a large change in the layout, while the user would easily
recognize the old drawing.

Although this problem can be alleviated to some extent by aligning the
drawings with a point set matching algorithm before computing the metric
(Bridgeman and Tamassia, 1998), it seems to be more promising to preserve
only the relative positions instead of the absolute coordinates. With their
orthogonal ordering model Misue et al. (1995) take into account the relative
ordering of every pair of nodes: if u lies, for instance, north-east of v in the
previous drawing, this should be the case in the new drawing too. Instead
of just counting how many pairs of nodes violate this condition, Bridgeman
and Tamassia (1998) suggest to measure the similarity more gradually as
the angle formed by the straight lines through the nodes u and v in both
drawings (and sum over all pairs of nodes u and v); they further refine this
measure with a weighted version.

Alternatively, the similarity can be expressed in terms of proximity rela-
tions, i. e., nodes close together should stay close together. Misue et al. (1995),
for instance, formalize proximity as the preservation of the nearest neighbor
graph of a drawing, which has an edge from every node to its nearest neigh-
bor. Also many other proximity relations have been suggested; see (Branke,
2001) for a detailed overview.

For the most part, dynamic graph drawing has been researched only for
ordinary graphs and the supported operations are restricted to insertion and
deletion of nodes and edges; see (Branke, 2001). For visual navigation, how-
ever, it is required to expand and contract nodes in compound (di-)graphs,

28

1.3 Visual Navigation

which is different in both regards. To this end, the most flexible dynamic
graph drawing algorithm probably is the client-server model of North and
Woodhull (2001), which provides a dynamic variant of the layered draw-
ing algorithm of Sugiyama et al. (1981). The clients are allowed to insert,
delete, or modify subgraphs of the shared graph. After each operation (or
after a sequence of them) a client can request a new layout of the modified
graph from the server. Although inserting and deleting subgraphs could be
useful for simulating the expanding and contracting in views, the approach
of North and Woodhull (2001) works only for ordinary DAGs and not for
compound digraphs.

Schreiber (2001) tries to preserve the user’s mental map using constraints
such as node u lies left of node v for visualizing the expanding and con-
tracting of nodes in views of hierarchically structured biochemical reaction
networks. These views, however, are ordinary graphs as defined by Buchs-
baum and Westbrook (2000) and thus this approach is of limited use for our
views, which are compound digraphs.

Although there are several algorithms for statically drawing compound
(di-)graphs or clustered graphs (cf. Section 1.3.2), the dynamic aspects of
visual navigation have been neglected in most cases. This is even more
surprising when considering that the basic operations expand and contract
already have been introduced by Sugiyama and Misue (1991), yet they seem
to be implemented through a complete relayout. Up to now, only Huang
and Eades (1998) briefly describe a (force-directed) graph drawing algo-
rithm for the visual navigation of clustered graphs; it also redraws the entire
view, but tries to preserve the user’s mental map by animating the transition.
WILMASCOPE of Dwyer and Eckersley (2003) provides three-dimensional vi-
sualization of compound (di-)graphs, also with a force-directed algorithm
with animated expanding and contracting of nodes.

Note that force-directed algorithms are already equipped with an intrin-
sic animation: since the nodes are moved iteratively, one can start from the
previous layout and simply display every step of the algorithm instead of
the final result. With other drawing styles, animation is not so easy, yet
more advanced approaches have been proposed for animating the transi-
tion between two drawings of the same graph (Friedrich and Eades, 2002).
Though helpful, such animation techniques reach their limits when the two
drawings differ too much.

29

1 Introduction

1.3.4 Dynamic Layered Drawings of Compound Digraphs

Among the various graph drawing styles, we focus on layered drawings for
two major reasons. First, layered drawing is well investigated not only
for ordinary graphs, but also for compound digraphs. Second, it is the
method of choice for digraphs; it is used for graphs as diverse as biochemi-
cal pathways in bioinformatics, PERT (CPM) charts in project management,
UML diagrams in software engineering, or entity relationship diagrams in
database design.

As already mentioned in Section 1.3.2, two major approaches exist for
layered drawings of compound digraphs: the algorithm of Sugiyama and
Misue (1991), and the more recent approach of Sander (1999, 1996a,b), which
differs from the former, among other things, by its method for distributing
the nodes into layers. Although the so-called global layering of Sander pro-
duces more compact (and supposedly more pleasant) layouts it is more diffi-
cult to update after an expand or contract than the local layering of Sugiyama
and Misue. Therefore, the approach of Sugiyama and Misue (1991) has been
chosen as basis.

Considering that the operations expand and contract are semantically in-
verse, the following property is highly desirable for a good user experience
in our intended interactive setting:

(MM0) The drawing after expanding (contracting) a node and immediately
contracting (expanding) it again is the same as before expanding (con-
tracting) it, i. e., expand and contract are visually inverse.

While this property is not specific to any particular drawing style, we now
state more precisely our notion of preserving the mental map in the chosen
context of layered drawings. Consider a compound digraph D = (V, E, F)
and a view D[U] that already has a layered drawing; assume that the leaf v
is expanded resulting in the new view D[U′], where U′ = U ∪ children(v).
The degree to which a layered drawing for D[U′] preserves the user’s men-
tal map is measured on the basis of the following properties:

(MM1) Each node u ∈ U, remains on its layer.
(MM2) Two nodes u, w ∈ U on the same layer do not change their order.
(MM3) For each edge (u, v) (or (v, u)), the expanded edges with respect to

v take the “same course” as the original contracted edge. This means
that for each layer that the contracted edge intersects, all nodes and
edges that are left (right) of this intersection stay left (right) of all
expanded edges in the drawing of D[U′].

30

1.4 Interactive Editor and Viewer

Note that (MM1) and (MM2) can be seen as an adaptation of the orthog-
onal ordering model of Misue et al. (1995) for layered drawings: (MM1)
assures that the above-below relations of all pairs of common nodes are pre-
served, while (MM2) takes care of the left-right relations within the same
layer. 16

For contracting a node, (MM1) and (MM2) are formulated symmetrically
by switching the roles of D[U] and D[U′]. The symmetric version of (MM3),
however, states that each contracted edge takes the same course as the corre-
sponding expanded edges, which is only well-defined if all expanded edges
take the same course before contracting. Unfortunately, this is not true in
general for the drawings the algorithm of Sugiyama and Misue (1991) pro-
duces. Nevertheless, it turns out that our method of updating the drawing
after expanding a node always will fulfill condition (MM3), which is why
we will allow contracting only for nodes that have been expanded with our
method before.

The solution, presented in Chapter 3, is an update scheme for the interme-
diate results and auxiliary graphs of the algorithm of Sugiyama and Misue
(1991). The initial view is drawn with the original algorithm in order to
initialize all these intermediate results. After each expand or contract op-
eration, the intermediate results of the previous run are adjusted according
to our update scheme. This has two major advantages. First, it is more
efficient than redrawing the entire view because the expensive steps of the
algorithm are effectively restricted to the modified part; in fact, only the last
step, the coordinate assignment, affects the entire view. Second, it preserves
the user’s mental map by satisfying (MM 0)–(MM3), i. e., all common nodes
stay on their layers with their relative order unchanged, expanded edges
take the same course as the corresponding contracted edge, and expanding
and contracting are visually inverse.

1.4 Interactive Editor and Viewer

These two major aspects of visual navigation of hierarchically structured
graphs, namely an efficient, dynamic data structure for the problem of
graph view maintenance and a drawing algorithm that appropriately vi-
sualizes the expanding and contracting, finally shall be combined in an
interactive editor and viewer for compound (di-)graphs. Therefore, a suit-

16Although (MM2) does not make any statement for nodes on different layers, their left-
right relations will be preserved implicitly in most cases due to the way the coordinate
assignment works.

31

1 Introduction

Figure 1.17: Screenshot of the proof-of-concept implementation by Pfeiffer (2005)
and Pröpster (2005) based on the proposed software architecture. Three different
views of the graph in Figure 1.16 are shown.

able software architecture for exploring and editing compound (di-)graphs
through graph views is presented in Chapter 4. The proposed architecture
already has been put into practice in form of a proof-of-concept implemen-
tation (Pfeiffer, 2005; Pröpster, 2005); see Figure 1.17 for a screenshot of
this implementation showing the compound digraph of Figure 1.16 in three
different views.

1.4.1 Key Features

The key features of our architecture are as follows. First, a compound
(di-)graph can have arbitrarily many views. This is indispensable, as we
want to show different views of the same compound (di-)graph simultane-
ously, e. g., one window with an abstract overview and another one for the
details. This is, incidentally, a common feature of many applications with a
graphical user interface, e. g., in most text editors it is possible to view and
work on different parts of the document simultaneously.

Second, other data structures than the one we present in Chapter 2 al-
ready exist or will be developed in the future. The architecture therefore is
kept flexible, i. e., it allows the choice between various data structures, and
extensible, i. e., new ones can be integrated easily. The same holds for layout

32

1.4 Interactive Editor and Viewer

algorithms, as our update scheme for the algorithm of Sugiyama and Misue
(1991) is just one possible solution; a force-directed approach, for instance,
would be another option.

Third, the transition between the drawings before and after expanding
and contracting can be animated. Although our update scheme already pre-
serves the user’s mental map well, animation makes it easier to follow the
transition. The concrete realization of the animation, whether to chose linear
interpolation or a more sophisticated approach like the one of Friedrich and
Eades (2002), is beyond the scope of this work. As the concrete animation
style therefore will be subject to variations, particular emphasis is laid on
the flexibility and extensibility in this regard.

Finally, compound (di-)graphs and associated views are employed not
only in our interactive editor, but conceivably also in a command line inter-
face or a web-based front end. In order to assure maximum reusability, the
application is divided into multiple parts that are coupled only loosely fol-
lowing the Model-View-Controller (MVC) pattern (Buschmann et al., 1996).

1.4.2 Previous Solutions

There are various libraries implementing data structures for ordinary graphs,
e. g., LEDA, GTL, or Boost Graph Library. None of these incorporates clus-
tered graphs or compound (di-)graphs. A thorough description of the coher-
ence of graph, hierarchies, and views from a software-engineering perspec-
tive can be found in (Raitner, 2002), in which an architecture for clustered
graphs with arbitrarily many different inclusion hierarchies per graph and
arbitrarily many different views per hierarchy is presented. Although it
is possible to adapt the paradigm of arbitrarily many views to compound
(di-)graphs, having arbitrarily many hierarchies is not possible for com-
pound (di-)graphs because they do not feature the same rigid distinction
between graph and inclusion hierarchy as clustered graphs.

Interactive systems for manipulating and exploring clustered graphs or
compound (di-)graphs have a long tradition. Sugiyama and Misue (1991)
implemented their drawing algorithm in a system called SKETCH-II. It
seems that not only expand and contract but also split and merge are sup-
ported in SKETCH-II, albeit no special care is taken to preserve the user’s
mental map; apparently, the entire graph is redrawn. Later, Sugiyama and
Misue (1993, 1995) devised D-ABDUCTOR, a generic compound digraph
editor. Besides the functionality of SKETCH-II, it also provides fisheye
views and animation. DA-TU of Huang and Eades (1998) features naviga-
tion and manipulation of clustered graphs through abridgments, which are

33

1 Introduction

similar to our views (cf. Definition 1.8). It uses a force-directed drawing
style and animates the transitions by showing the intermediate steps of the
force-directed algorithm. HIGRES of Lisitsyn and Kasyanov (1999) also is
an editor for clustered graphs working with views that resemble the abridg-
ments of Huang and Eades; it is extensible with custom drawing styles,
which may consist of several animation steps.

Besides these two-dimensional systems, there are others that make use of
three dimensions. Parker et al. (1998) employ expanding and contracting
in their system NESTEDVISION3D as one solution to the problem of focus
and context, i. e., to show both an overview and the necessary details of a
large graph. WILMASCOPE of Dwyer and Eckersley (2003) is a framework
for three-dimensional visualization, navigation, and manipulation of com-
pound (di-)graphs. Different drawing styles, mostly force-directed ones, are
available and the expanding and contracting of nodes is animated, at least
for the force-directed styles. WILMASCOPE also follows the MVC paradigm;
it is designed to be extensible with regard to drawing styles.

Aiming at the visualization of huge graphs with hundreds of millions
of nodes, MGV of Abello and Korn (2002) employs a different concept for
exploring a hierarchically structured graph: not only nodes, also edges can
be expanded. Expanding an edge (u, v) yields a graph consisting of u’s
and v’s children and all derived edges between them; expanding a node
u replaces it with its children and their derived edges. Both operations,
however, lose the context, but multiple views are used to compensate for
this. Various visualization styles for the selected subgraphs are described
and it seems that the system can easily be extended with new styles.

Although all of these systems somehow need to solve the problem of
graph view maintenance, none provides a thorough description of the un-
derlying data structure used for representing clustered graphs or compound
(di-)graphs and their views. Consequently, they do not seem to be flexible
and extensible in this respect, which becomes increasingly important, as
various different data structures for graph view maintenance have been
introduced recently.

34

2
Dynamic Tree Cross Products

First and foremost, a suitable data structure for the problem of graph view
maintenance is needed. Although there already exist applications that

apparently feature expanding and contracting in views of clustered graphs
or compound (di-)graphs, we cannot choose from a wide range of such data
structures. Only recently a formal definition of the graph view maintenance
problem (for clustered graphs) has been given by Buchsbaum and West-
brook (2000). The data structure they propose solves the dynamic graph
variant (for clustered graphs), i. e., edges may be added and removed, but
the node set is fixed. A different solution for the dynamic graph variant is
given by Buchsbaum et al. (2000): they formulate it as a special case of a
more general problem: range searching over tree cross products. So far these
two are the only known solutions to the problem of graph view mainte-
nance.

A tree cross product consists of d distinct trees T1 = (V1, E1), . . . , Td =
(Vd, Ed) and a set of d-dimensional hyperedges u = (u1, . . . , ud) with ui ∈
Vi for i = 1, . . . , d. In this context, range searching means to decide for
given tree nodes u1, . . . , ud whether there exists a hyperedge connecting
the subtrees rooted at these nodes and to report all those hyperedges if
necessary. In (Buchsbaum et al., 2000) the set of hyperedges is dynamic, but
the trees are static. In the following, we generalize this approach as regards
insertion and deletion of leaves of the trees T1, . . . , Td.

As mentioned in Buchsbaum et al. (2000), tree cross products have more
applications than just graph view maintenance, e. g., text indexing with one
error: given a text T = x1 . . . xn and a pattern P of length m the task is to
find all locations i in T such that P matches the substring xi, . . . xi+m−1 with
exactly one error. Another important application is finding hammocks in a

35

2 Dynamic Tree Cross Products

network. In a directed graph G = (V, E) with a source node s and a sink
node t, a node u dominates a node v if every path from s to v goes through
u. Symmetrically, a node v post-dominates a node u if every path from u to t
goes through v. The hammock between two nodes u and v is defined as the
set of nodes dominated by u and post-dominated by v. Buchsbaum et al.
formulate both problems as tree cross products and solve them with their
range searching data structure.

After a formal definition of range searching over tree cross products in
Section 2.1, a first impression of the complexity of this problem is given
in Section 2.2 by means of analyzing the most straightforward solution,
namely using no special data structures at all. Since we generalize the
approach of Buchsbaum et al. (2000), we first recapitulate their solution
in Section 2.3. The data structure they propose supports only insertion
and deletion of hyperedges, whereas the trees are fixed. In Section 2.4, we
therefore extended this solution to allow insertion and deletion of leaves.
Both the description of the original data structure and our extension are
subdivided into two parts: we first examine the data structure for the two-
dimensional case in Section 2.3.1 and Section 2.4.1, respectively; then the
two-dimensional case is used as basis for the recursive description of the
higher dimensional cases in Section 2.3.2 and Section 2.4.2, respectively.
We conclude the excursion into range searching over tree cross products
with Table 2.4.2 comparing the results for our new data structure to the
approach of Buchsbaum et al. (2000) and to the naive solution. In Section 2.5,
we finally formulate the new dynamic leaves variant of the graph view
maintenance problem as a two-dimensional tree cross product and thus
solve it efficiently with our new data structure.1

2.1 Tree Cross Products

Definition 2.1. A d-partite hypergraph G = (V, E) consists of nodes V =d-partite
hypergraph V1 ∪̇ . . . ∪̇ Vd and edges E ⊆ ∏d

i=1 Vi = V1 × · · · × Vd; u = (u1, . . . , ud) ∈ E
is called a d-dimensional hyperedge. For d = 2, a d-partite hypergraph is a
bipartite graph.

Definition 2.2. A tree cross product C = ({T1, . . . , Td}, E) consists of disjointtree cross product
rooted trees T1 = (V1, E1), . . . , Td = (Vd, Ed) and hyperedges E such that
G = (V1 ∪̇ . . . ∪̇ Vd, E) is a d-partite hypergraph. Let n = |V1 ∪̇ . . . ∪̇ Vd|,
m = |E|, and ∆ = maxd

i=1 depth(Ti).

1A preliminary version of the material in this chapter appears in (Raitner, 2004a,c).

36

2.1 Tree Cross Products

E(u1, u2, u3)

u1

u2

u3

Figure 2.1: Example of a three-dimensional tree cross product. The dashed edges
belong to the trees; the solid ones are the hyperedges E.

In other words, a tree cross product consists of d-dimensional hyperedges
connecting the nodes of d disjoint trees. Figure 2.1, for instance, shows a
three-dimensional tree cross product; the dashed edges form the trees and
the solid ones are the three-dimensional hyperedges.

Let C = ({T1, . . . , Td}, E) be a tree cross product consisting of the trees
T1 = (V1, E1), . . . , Td = (Vd, Ed). For a tuple u = (u1, . . . , ud) ∈ ∏d

i=1 Vi, let

E(u) = {x = (x1, . . . , xd) ∈ E | ∀ 1 ≤ i ≤ d : xi ∈ desc(ui)}

be the set of hyperedges between descendants of u’s elements, i. e., the set
of hyperedges connecting the subtrees rooted at the nodes ui (1 ≤ i ≤ d). In
Figure 2.1 the set E(u1, u2, u3), for instance, contains two edges.

Definition 2.3. A tuple u = (u1, . . . , ud) ∈ ∏d
i=1 Vi is called a derived hyper- derived

hyperedge,
hypergraph

edge if E(u) 6= ∅. The derived hypergraph G = (V, E) consists of the node
set V = V1 ∪̇ . . . ∪̇Vd and all derived hyperedges: E = {u ∈ ∏d

i=1 Vi | E(u) 6=
∅}.

In the example shown in Figure 2.1, the two edges in the set E(u1, u2, u3)
give rise to a derived edge (u1, u2, u3) ∈ E. Note that a hyperedge u =
(u1, . . . , ud) ∈ E contributes to every set E(u′1, . . . , u′d) where u′i is an ances-
tor of ui (1 ≤ i ≤ d). The number of derived hyperedges therefore is at most
m∆d, i. e., |E| ≤ m∆d.

As defined in (Buchsbaum et al., 2000), the problem of range searching
over tree cross products is to perform the following queries on tuples u ∈
∏d

i=1 Vi:

37

2 Dynamic Tree Cross Products

edgeQuery(u) determines whether E(u) 6= ∅, i. e., whether u is a derived
hyperedge;

edgeReport(u) determines the set E(u);
edgeExpand(u, j) determines the set of all derived hyperedges of the form

(u1, . . . , uj−1, x, uj+1, . . . , ud) ∈ E with x ∈ children(uj) (precondition:
1 ≤ j ≤ d).

In the example in Figure 2.1, edgeQuery(u1, u2, u3) returns true, while
edgeReport(u1, u2, u3) returns the two edges in E(u1, u2, u3). Both children
of u3 are returned by edgeExpand((u1, u2, u3), 3), whereas only the left child
of u1 is returned by edgeExpand((u1, u2, u3), 1) .

Note that the definition of a derived hyperedge in a tree cross product
intentionally bears some resemblance to a derived edge in a compound
digraph (cf. Definition 1.7). Indeed, we will utilize this fact in Section 2.5
and transform a compound digraph into a tree cross product such that the
question whether there is a derived edge between two nodes of the graph
can be answered with an appropriate edgeQuery. The edgeExpand opera-
tion turns out to be useful for expanding a node u in view of a compound
digraph: it yields the expanded edges of each derived edge that is incident
to u before expanding.

Buchsbaum et al. (2000) describe both a static variant supporting only
these queries and a more dynamic variant providing additionally the fol-
lowing updates:

newEdge(u) adds u to the set of hyperedges E;
deleteEdge(u) removes u from E.

Note that for our application, i. e., an interactive editor that works with
views of compound (di-)graphs, adding and removing edges surely is in-
dispensable. The trees, however, are fixed, which is counterintuitive in this
context. Therefore, we consider a more dynamic variant by adding the
following operations:

newLeaf(u) adds a new leaf to Tj as child of node u (precondition: u ∈ Vj);
deleteLeaf(u) removes u and all hyperedges incident to it from Tj (precon-

dition: u ∈ Vj is a leaf, but not the root of Tj).

This gives us the possibility to construct any tree from scratch, though the
required operations have to be ordered appropriately. The data structure
we propose in Section 2.4 extends the approach of Buchsbaum et al. (2000)
and thus solves the problem of range searching over tree cross products
in this more dynamic variant, i. e., with adding and removing leaves. As
we will see in Section 2.5, a compound digraph can be modeled as a tree

38

2.2 Naive Approach

cross product. For this reason, our data structure also solves the problem of
graph view maintenance in the dynamic leaves variant. Before discussing
our approach as well as the one it extends in detail, we first take a brief look
at the most naive solution in order to get an impression of the complexity of
these operations and the trade-offs between query and update operations.

2.2 Naive Approach

The most straightforward solution to the problem of range searching over
tree cross product probably is to be lazy, i. e., to use no additional data
structure at all. The trees are stored canonically: in every node a reference
to its parent and a list of references to its children is kept; additionally, a list
of all hyperedges E is maintained.

Since no complicated data structures have to be adjusted, this approach
favors updates: newLeaf and deleteLeaf take only constant time2, as do
newEdge and deleteEdge. Note that deleting a leaf first requires locating
it in its parent’s list of children. Since every node is in exactly one such
list, a reference to the corresponding list entry can be stored with each
node. Likewise, an edge is linked with its position in the list of all edges to
facilitate its deletion.

Queries, however, require inspecting all edges in the worst case. For
instance, edgeQuery(u1, . . . , ud) can be implemented by checking for each
edge (u′1, . . . , u′d) ∈ E whether u′i ∈ desc(ui). Without special data struc-
tures for these ancestor queries, edgeQuery takes O(md∆) time. Analo-
gously, all original edges that are represented by a derived edge can be
reported in O(md∆) time. Finally, expanding a derived edge (u1, . . . , ud)
at index j, i. e., edgeExpand((u1, . . . , ud), j), also takes O(md∆) in this naive
approach: each edge (u′1, . . . , u′d) ∈ E is checked whether it contributes to
the derived edge; whenever such an edge is found, the corresponding child
of uj is determined by navigating upwards from u′j in Tj.

2.3 Static Trees

Before we describe its extension, we recapitulate the original approach of
Buchsbaum et al. (2000), who propose a data structure for d-dimensional
tree cross products where the set of hyperedges E is dynamic, but the trees
are fixed. This data structure is defined recursively: the two-dimensional

2Unless explicitly stated, all time bounds are worst-case.

39

2 Dynamic Tree Cross Products

S(u1)

u1

Figure 2.2: A two-dimensional tree cross product illustrating the set S(·).

case, presented in Section 2.3.1, serves as basis for the recursive description
of the higher dimensional data structure, which is given in Section 2.3.2.

2.3.1 The Two-Dimensional Case

In the two-dimensional case, the tree cross product consists of two trees
T1 = (V1, E1) and T2 = (V2, E2) connected by edges E ⊆ V1 × V2. In an
O(n) preprocessing phase, both trees are traversed in post-order and each
node is assigned its post-order number. In order to simplify the following
description, we will abuse notation and identify a node u ∈ V1 ∪ V2 with
its post-order number in the respective tree. Let min(u) = min{v | v ∈
desc(u)} denote the smallest and max(u) = max{v | v ∈ desc(u)} the
largest node in the subtree rooted at u. Note that these two bounds fully
determine the set of nodes in the subtree; more precisely: desc(u) = {v ∈
N | min(u) ≤ v ≤ max(u)}.

For a node u1 ∈ V1, the set

S(u1) = {u2 ∈ V2 | ∃(u′1, u2) ∈ E : u′1 ∈ desc(u1)}

contains all nodes of the tree T2 that are connected to a node in the subtree
of u1; see Figure 2.2. For a node u2 ∈ T2 this set is defined analogously:

S(u2) = {u1 ∈ V1 | ∃(u1, u′2) ∈ E : u′2 ∈ desc(u2)}.

The following lemma shows how the sets S(·) and desc(·) can be utilized
for an edgeQuery operation:

Lemma 2.4 For all u1 ∈ V1 and all u2 ∈ V2, E(u1, u2) 6= ∅ if and only if
S(u1) ∩ desc(u2) 6= ∅. (Symmetrically, E(u1, u2) 6= ∅ if and only if S(u2) ∩
desc(u1) 6= ∅.)

Proof. By definition, S(u1)∩desc(u2) 6= ∅ if and only if there exists an edge
(u′1, u′2) ∈ E such that u′1 ∈ desc(u1) and u′2 ∈ desc(u2), i. e., if and only if
E(u1, u2) 6= ∅. �

40

2.3 Static Trees

In other words, edgeQuery(u1, u2) is true if and only if S(u1) ∩ desc(u2) 6=
∅ (or symmetrically if and only if S(u2) ∩ desc(u1) 6= ∅).

For every tree node u ∈ V1 ∪V2, Buchsbaum et al. store min(u), max(u),
and the set S(u). Furthermore, the children of every node are stored in a
list sorted in ascending order. Being a subset of a fixed integer universe3,
each set S(·) is maintained as a separate contracted stratified tree (CST)
(Preparata et al., 1992). A CST stores a subset A of a fixed integer universe
U = {0, 1, . . . , n− 1} in O(|A| log log n) space such that inserting, deleting,
and looking up an element takes O(log log n) time.4 Also, the successor
operation is supported in O(log log n) time: for x ∈ U, successor(A, x)
finds the smallest element of A that is greater or equal than x or null if no
such element exists.

As the following lemma shows, the successor operation plays a key role
in the implementation of edgeQuery:

Lemma 2.5 For all u1 ∈ V1 and all u2 ∈ V2, E(u1, u2) 6= ∅ if and only if
successor(S(u1), min(u2)) ≤ max(u2). (Symmetrically, E(u1, u2) 6= ∅ if
and only if successor(S(u2), min(u1)) ≤ max(u1).)

Proof. The claim follows from Lemma 2.4, as S(u1) ∩ desc(u2) 6= ∅ if and
only if successor(S(u1), min(u2)) ≤ max(u2). �

Therefore, Buchsbaum et al. implement edgeQuery(u1, u2) in O(log log n)
time by checking whether

successor(S(u1), min(u2)) ≤ max(u2)

or, symmetrically, whether

successor(S(u2), min(u1)) ≤ max(u1).

In order to facilitate the edgeReport operation, Buchsbaum et al. link
the leaves in each CST. Therefore, edgeReport(u1, u2) is just a matter of

3Remember that the nodes have been identified with their post-order numbers and that
the trees are static, i. e., the node set is fixed.

4The time bounds for these operations are similar to those of the more popular van Emde
Boas trees (van Emde Boas et al., 1977). The space bound of a CST, however, depends on
the size of the subset A it represents, whereas the space bound of a van Emde Boas tree
is independent of |A|: it always uses O(n log log n) space. Although this bound can be
improved easily to O(n) (van Emde Boas, 1977), it is still independent of the size of A,
which is a considerable overhead for small subsets A.

41

2 Dynamic Tree Cross Products

finding the first edge with successor(S(u1), min(u2)) and reporting all sub-
sequent leaves as long as they are less or equal than max(u2). This takes
O(log log n + k) time where k is the number of edges reported.

Remark. Although not mentioned explicitly in Buchsbaum et al. (2000), stor-
ing the sets S(·) as defined above is not sufficient for edgeReport. First and
foremost, each entry in a set S(·) needs to be associated with the edge that
created it. Consider two edges (u1, u2) ∈ E and (v1, u2) ∈ E and the nearest
common ancestor n1 of u1 and v1; then, S(n1) contains only one entry u2.
Of course, the sets S(·) could be defined as multisets instead of sets, which
would yield one entry per edge. However, the each set S(·) is maintained
as a CST, which can only store a subset of a fixed integer universe and no
multiset. Even if it were possible (as it is, for instance, for ordinary balanced
search trees), it would unnecessarily complicate the deletion of an edge. If
we wanted to delete the edge (u1, u2) in the above example, we cannot know
which of the two entries with key u2 in S(n1) belongs to this edge and thus
has to be deleted; in the worst case, we would have to check all of them.
Instead of maintaining S(·) as multisets each node u2 ∈ S(u1) for u1 ∈ V1

therefore has to be associated with the set of edges that created this entry, i. e.,
with the set {(u′1, u2) ∈ E | u′1 ∈ desc(u1)}. (Symmetrically, each node u1 ∈
S(u2) for u2 ∈ V2 is associated with the set {(u1, u′2) ∈ E | u′2 ∈ desc(u2)}.)
Storing these sets as doubly linked lists results in the same problem as for
the multiset solution described above: the entire list has to be scanned for
finding the correct entry when an edge is deleted. Dynamic perfect hashing
(Dietzfelbinger et al., 1994) would yield expected constant time for inserting
and deleting, but it does not support a sequential scan of the whole set, which
is needed for edgeReport. Using an ordinary balanced search tree would be
possible, but would require additional O(log n) time for deleting and inserting
an edge and thus would violate the time bounds stated in (Buchsbaum et al.,
2000).
The problem with any of the aforementioned representations for the set of

edges associated with an entry in a set S(·) is that the edge has to be searched
before it can be deleted. In other words, we only know the edge and not its
respective position in the data structure. If we knew instead, for instance, the
edge’s container in a doubly linked list, we could delete the edge in constant
time. This gives rise to the following solution: we maintain the set of edges
for an entry in S(·) as a doubly linked list and keep track of all occurrences
of an edge with a list of references to the respective containers. We store this
list of occurrences in an additional field in the record representing an edge
such that it can be accessed in constant time given the edge. Although this

42

2.3 Static Trees

does not facilitate the deletion of an edge in any particular set S(·), as the
list of occurrences has to be scanned for the one to delete, it accelerates the
deletion of an edge in all sets S(·) because all occurrences have to be deleted
anyway. Incidentally, this also offers the possibility of storing multiple edges,
which indeed is an issue in the generalization to higher dimensions presented
in Section 2.3.2.

Buchsbaum et al. could have implemented edgeExpand with an ap-
propriate collection of edgeQuery operations. In general, however, this is
less efficient than Algorithm 2.1.5 Since it simplifies the description, Al-
gorithm 2.1 treats the expansion of the first element of an edge only, i. e.,
edgeExpand((u1, u2), 1); expanding the second element works analogously.

Algorithm 2.1: edgeExpand((u1, u2), 1)
input : a derived edge (u1, u2) ∈ E

output: all children u′1 of u1 such that (u′1, u2) ∈ E

let v1, . . . , vl be the list of children of u1 in ascending order
R← ∅, t← v1
repeat

s← successor(S(u2), min(t))
if s ≤ max(vl) then

6 let vi be the ancestor of s among children(u1)
R← R ∪ {vi}
if i 6= l then

t← vi+1
end

end
until s > max(vl) or i = l
return R

Since the complexity of Algorithm 2.1 hinges on the implementation of
line 6, Buchsbaum et al. additionally use a separate level ancestor data struc-
ture for each tree (Buchsbaum, 2003). Such a data structure provides level
ancestor queries, i. e., determining the ancestor of a given node on a given
depth of the tree. This level ancestor problem is well studied both in the static
variant (Dietz, 1991; Berkman and Vishkin, 1994; Bender and Farach-Colton,
2002), which is sufficient here, and the dynamic variant (Dietz, 1991; Alstrup
and Holm, 2000), which we will use in our dynamization of this approach

5The original description of this algorithm in Buchsbaum et al. (2000) is rather short and
omits essential details. A detailed description similar to Algorithm 2.1 has been pre-
sented in (Raitner, 2004c).

43

2 Dynamic Tree Cross Products

because it additionally allows inserting and deleting of leaves. For the static
variant, the solutions of Dietz (1991), Berkman and Vishkin (1994), and Ben-
der and Farach-Colton (2002) are all optimal6, i. e., preprocessing a tree with
n nodes takes O(n) and a level ancestor query takes O(1) time. With such a
data structure for both trees Algorithm 2.1 takes O(k log log n) time, because
every successor operation except the last yields a new result.

Inserting or deleting an edge (u1, u2) is straightforward: for each ancestor
u′1 of u1, we first look up u2 in the CST for the set S(u′1). This yields the
doubly linked list stored under the key u2 in which we insert the edge
(u1, u2). If u2 is not found in S(u′1), a new doubly linked list containing only
the edge (u1, u2) is inserted into the CST for the set S(u′1) under the key u2.
Either way, the reference to the list container holding the edge (u1, u2) is
added to the list of occurrences stored in the edge record. For the ancestors
u′2 of u2 the updates are symmetric. These updates take O(log log n) time at
each ancestor and there are at most O(2∆) of them.7.

Altogether, Buchsbaum et al. (2000) get the following results for the two-
dimensional case:

Theorem 2.6 (Buchsbaum and Westbrook (2000))
With O(2∆m log log n) space, we can insert or delete edges in O(2∆ log log n)
time8 and perform edgeQuery in O(log log n), edgeExpand in O(k log log n),
and edgeReport in O(log log n + k) time, where k is the number of edges
reported.

Buchsbaum et al. (2000) use compressed trees (Harel and Tarjan, 1984) to
reduce both the space bound and the time bounds for inserting and deleting
edges. For a tree T, an edge (parent(u), u) is termed light if 2|desc(u)| ≤
|desc(parent(u))| and heavy otherwise. At most one edge from u to a child
can be heavy because |desc(u)| = 1 + ∑v∈children(u) |desc(v)|. This means
that the heavy edges partition the nodes of the tree into a collection of heavy
paths.9 The apex of a heavy path is its topmost node, i. e., the one of smallest
depth. The compressed tree C(T) as defined by Buchsbaum et al. (2000)
evolves from T by contracting every heavy path into its respective apex.

6From a practical point of view, however, the solution of Bender and Farach-Colton (2002)
is preferable; its description is much easier and requires no “heavy” machinery making
it more suitable for an implementation.

7Recall that ∆ = max{depth(T1), depth(T2)}.
8The constant factor 2 could be omitted here. However, in the recursive description of the

higher dimensional data structure, for which this case will serve as basis, we will get
a factor 2 for every dimension. This factor can thus be neglected here only because the
dimension is fixed.

9A node with no incident heavy edges is a trivial heavy path.

44

2.3 Static Trees

In the original definition of Harel and Tarjan (1984), however, the com-
pressed tree is constructed differently. For any node v, let apex(v) denote
the apex of the heavy path containing v. The compressed tree has the same
set of nodes as T, but a different set of edges: each node v 6= root(T) is con-
nected to apex(parent(v)). Therefore, every node of a heavy path except
the apex is attached as leaf to the respective apex in the compressed tree,
whereas in the definition used by Buchsbaum et al. (2000) these nodes are
merged into the apex.

Note that every edge in C(T) corresponds to a light edge in T. With the
original definition of Harel and Tarjan, in fact, every edge in C(T) is light.
This is not true for the definition of Buchsbaum et al. because contracting a
heavy path into its apex reduces the number of nodes in the subtree rooted
at the apex. According to (Harel and Tarjan, 1984, Lemma 7), C(T) has
the convenient property that it is more balanced than T: its depth is at
most blog nc, where n is the number of nodes in T. This holds also for a
compressed tree as defined by Buchsbaum et al. which can be constructed
from the one according to the definition of Harel and Tarjan by removing
some leaves.

The key idea of Buchsbaum et al. (2000) is to maintain the sets S(·) for
the nodes of C(T) instead of T. Since a node µ of C(T) represents a heavy
path in T, a set S(µ) conceptually combines the sets S(u) according to the
former definition for all nodes u on the heavy path corresponding to µ.
In order to differentiate between these sets again, the entries of S(µ) are
enriched with a second parameter, i. e., they are now pairs of the form (u, i).
As a consequence, the query operations become more complicated, more
precisely, they are implemented as three-sided range queries on such a set S(µ).
Thus, Buchsbaum et al. (2000) maintain these sets no longer as CSTs, but
as priority search trees (PST) (McCreight, 1985; Willard, 2000). Although this
improves the space bound and the time bounds for inserting and deleting
edges, the time bounds of all query operations increase slightly:

Theorem 2.7 (Buchsbaum and Westbrook (2000))
Let s = min{∆, log n}. With O(2sm) space, we can insert or delete edges in
O(2s log n/log log n) time10, perform edgeQuery in O(log n/log log n), edgeExpand
in O(k log n/log log n), and edgeReport in O(log n/log log n + k) time, where k is
the number of edges reported.

Remark. In order to reduce the space bound further Buchsbaum et al. (2000)
stratify T1 into

√
depth(T1) strata of

√
depth(T1) levels each (similarly for

10Again, the factor 2 can be omitted here because the dimension is fixed, but it is no longer
negligible if the dimension is part of the input.

45

2 Dynamic Tree Cross Products

T2). An edge (u, v) contributes an entry only to those sets S(x) where x is an
ancestor of u (or v) in the same stratum. Additionally, each node x at the top
of stratum, i. e., parent(x) is in a higher stratum, maintains a set S′(x) with
all entries corresponding to edges incident with descendants in deeper strata.
Buchsbaum et al. (2000) claim that a query on a set S(x) (as defined before)
can be implemented by uniting the corresponding queries on the new S(x)
and S′(top(x)), where top(x) is the ancestor of x at the top of x’s stratum.
Unfortunately, this is not correct (Buchsbaum, 2003): consider x and y such
that top(x) = top(y); any edge incidentwith a descendant of y will be placed
into S′(top(x)) and will thus be a possible answer to a query on S(x).

2.3.2 Higher Dimensions

Since the generalization to higher dimensions is very concise and partly
incorrect in (Buchsbaum et al., 2000), we give a more detailed and corrected
description in the following.

The two-dimensional data structure described so far maintains a dynamic
set of (hyper-)edges (u1, u2) ∈ V1 × V2 between the nodes of two trees. It
provides the retrieval operations edgeQuery, edgeReport, and edgeExpand.
The recursive definition of the higher dimensional data structure uses this
two-dimensional case as basis.

Suppose that there is already such a data structure for the case d, i. e.,
for maintaining hyperedges between nodes of d trees that provides all the
operations described above. The (d + 1)-dimensional data structure stores
at each node u1 ∈ V1 the set

Sd+1(u1) = {(u′1, u′2, . . . , u′d+1) ∈ E | u′1 ∈ desc(u1)},

i. e., all hyperedges incident with descendants of u1. If we ignore the first
element of these (d + 1)-dimensional hyperedges, each set Sd+1(·) can be
interpreted as a (multi-)set of d-dimensional hyperedges and thus it can
be stored in a separate d-dimensional data structure. In other words, the
(d + 1)-dimensional hyperedges become entries in a d-dimensional data
structure according to their projections onto the last d elements. In Fig-
ure 2.3, for instance, the dark edges form the set S3(u1), which is stored as
the two-dimensional tree cross product shown in Figure 2.4.

Obviously, edgeQuery(u1, u2, . . . , ud+1) can be forwarded to the d-dimen-
sional data structure stored at u1 as edgeQuery(u2, . . . , ud+1); edgeReport is
forwarded similarly. Note that the returned edges are already the correct
(d + 1)-dimensional result because the d-dimensional data structure con-
tains the original (d + 1)-dimensional hyperedges; their projections onto

46

2.3 Static Trees

u1

T1
T2

T3

Figure 2.3: A three-dimensional tree
cross product; the darker edges form
the set S3(u1).

T2

T3

Figure 2.4: The two-dimensional tree
cross product as which the set S3(u1)
is stored.

the last d elements are used only as keys. edgeExpand((u1, u2, . . . , ud+1), j)
for j 6= 1 is implemented as edgeExpand((u2, . . . , ud+1), j) on the d-dimen-
sional data structure at the node u1. For expanding a hyperedge at its first
element (j = 1), the same data structure is built with some other tree in the
role of T1, for instance, T2.

Theorem 2.8
With O((2∆)d−1m log log n) space,we can insert or delete edges in O((2∆)d−1

log log n) time, perform edgeQuery in O(d + log log n), edgeExpand in O(d +
k log log n), and edgeReport in O(d + log log n + k) time, where k is the num-
ber of edges reported.

Proof. The base case, d = 2, is exactly Theorem 2.6. For d > 2, an edge
(u1, . . . , ud) contributes an entry to the lower dimensional data structure at
every ancestor of u1 and at every ancestor of u2 (assuming that T2 is the tree
designated to be T1 for the second data structure). These are O(2∆) entries;
by induction each entry uses O((2∆)(d−1)−1 log log n) space in the lower
dimensional data structure, which gives a total of O(m(2∆)d−1 log log n)
space. Inserting or deleting an edge is implemented as one insert or delete
operation in a lower dimensional data structure for every ancestor in the
two dimensions, each of which takes O((2∆)(d−1)−1 log log n) by induction.
All retrieval operations edgeQuery, edgeReport, and edgeExpand are for-
warded to an appropriate lower dimensional data structure; this recursion
ends at some two-dimensional data structure with the time bounds of The-
orem 2.6. Hence, we get d− 1 additional steps for the recursion. �

47

2 Dynamic Tree Cross Products

Theorem 2.9
Let s = min{∆, log n}. With O((2s)d−1m) space, we can insert or delete an
edge in O((2s)d−1 log n/log log n) time, perform edgeQuery in O(d + log n/log log n),
edgeExpand in O(d + k log n/log log n), and edgeReport in O(d + log n/log log n +
k) time, where k is the number of edges reported.

Proof. This follows similar to the proof of Theorem 2.8 with Theorem 2.7
instead of Theorem 2.6 as base case. �

Buchsbaum et al. (2000) include neither the additive d terms in the time
bounds of edgeQuery, edgeReport, and edgeExpand nor the factor 2d−1

in the space bound and in the time bounds for inserting or deleting an
edge. However, both seem unavoidable given their description (Buchs-
baum, 2003).

2.4 Dynamization: Inserting and Deleting Leaves

After having introduced the approach of Buchsbaum et al. (2000), we will
combine it with a novel technique of using search trees superimposed over
order maintenance data structures. This makes the previous data structure
more dynamic in regard to insertion and deletion of leaves at the cost of a
slight slow-down for the other operations. Our extension primarily affects
the two-dimensional case. The recursive data structure for the general case
is built essentially as in the original approach.

2.4.1 The Two-Dimensional Case

As in Section 2.3.1, the tree cross product consists of two trees T1 = (V1, E1)
and T2 = (V2, E2) connected by edges E ⊆ V1 ×V2.

The approach of Buchsbaum et al. (2000) hinges on the fact the nodes
of both trees are ordered linearly such that for each tree node v the set
desc(v) forms a contiguous block from min(u) to max(u) in this order. Since
newLeaf(u) was defined to insert the new leaf as a child of u, insertions oc-
cur at any point in the linear order. Therefore, simply assigning consecutive
integers to the nodes, as in (Buchsbaum et al., 2000), is inefficient: all nodes
following the new one would have to be renumbered. In other words, for
fixed trees a simple mapping of tree nodes to consecutive integers is suffi-
cient, but adding new leaves requires a more sophisticated solution. Besides
comparing two nodes with respect to their position in the order, an appro-
priate data structure also needs to support insertion and deletion at any
point.

48

2.4 Dynamization: Inserting and Deleting Leaves

Maintaining Order in a List

The order maintenance problem is that of maintaining a linearly ordered set
of elements under a sequence of the following three operations (Dietz and
Sleator, 1987):

insert(x, y) inserts a new record y immediately after record x into the order;
delete(x) deletes record x;
order(x, y) returns true if and only if x comes before y in the order.

The trivial solution, of course, is to store the records in a linked list. In-
serting and deleting thus take O(1) time, while an order query requires
traversing the list in O(n) time, where n denotes the number of records.
Another straightforward solution is to use a balanced search tree in which
the records are stored in the nodes in symmetric order. Insertion and dele-
tion are implemented as the respective operations on the search tree, which
take O(log n) time. An order(x, y) query is performed in O(log n) time as
follows: we walk up the tree from both x and y to their nearest common
ancestor and determine whether x lies in the left subtree.

The more advanced solutions all have one thing in common: the records
are maintained as a linked list and each record is assigned a number, its
label.11 The labels are monotonically increasing from the beginning of the
list to its end, which reduces an order query to a simple comparison of the
two records’ labels. In order to maintain this invariant during insertions it
may be necessary to renumber certain nodes in the vicinity of the inserted
record.

Dietz (1982) propose an algorithm in which each insertion causes O(log n)
renumberings in the amortized sense12; deletions are not considered. Tsaka-
lidis (1984) eliminates this restriction: insertions and deletions take O(log n)
amortized time while determining the order still is possible in O(1) time.
He improves this result to O(1) amortized time for both insertion and dele-
tion and O(1) time for order. Dietz and Sleator (1987, Section 2) give a much
simpler algorithm yielding the same time bounds for all three operations.
Furthermore, Dietz and Sleator (1987, Section 3) describe an optimal algo-
rithm, i. e., all operations take O(1) worst-case time. Using a technique of

11This is why the problem of order maintenance often is referred to as the problem of list
labeling.

12Amortized analysis means that the cost of a sequence of operations is averaged over all
operations performed. It is useful to show that the average cost of an operation is small,
even though a single operation in the sequence might be expensive. The techniques of
amortized analysis are surveyed in Tarjan (1985) and Cormen et al. (2001, Chap. 17).

49

2 Dynamic Tree Cross Products

Willard (1986) for insertions and deletions in dense sequential files on the
top level of a four-level data structure, it is, however, rather complicated.
Bender et al. (2002) propose two algorithms that match the bounds of Dietz
and Sleator (1987), but are much simpler.

Replacing the Fixed Order

The key idea of our approach is to replace the simple numbering of the tree
nodes in the solution of Buchsbaum et al. (2000) with an order maintenance
data structure. Since we will treat the order maintenance component as a
black box, any implementation will do. For the theoretical results of The-
orem 2.16, however, we assume an optimal, i. e., O(1) worst-case, solution
(Dietz and Sleator, 1987; Bender et al., 2002).

Each tree uses its own, separate order maintenance data structure. In
an O(n) preprocessing phase, both trees are traversed in post-order and
their nodes are stored in this order in the respective order maintenance data
structure. Note that whenever in the following two nodes belonging to
the same tree are compared, this is implemented as an order query on the
order maintenance data structure for this tree. To simplify the description,
we will use <, ≤, ≥, and > to compare two nodes (of the same tree) with
respect to this order instead of the corresponding order query. Let again
min(u) denote the smallest and max(u) and the largest node in the subtree
rooted at u. As in the original approach of Buchsbaum et al. (2000), min(u),
max(u), and S(u) are stored at every node u ∈ V1 ∪V2; the children of u are
kept in a list sorted in ascending order.

Section 2.3.1 shows that the data structure chosen for the sets S(·) deter-
mines the complexity of all query operations.13 Buchsbaum et al. (2000)
interpret the nodes of their static trees as a fixed integer universe. Therefore,
a set S(·), which is a subset thereof, can be maintained as a CST. This is im-
practical here because the set of tree nodes now is dynamic. Apart from the
universe not being fixed, using the (integer) labels of the order maintenance
structures in a CST is complicated: during an insert operation, nodes in the
vicinity of the inserted one are possibly renumbered and thus all sets S(·)
containing a shifted node need to be updated.

Therefore, each set S(·) is maintained as an ordinary height-balanced
search tree. Basically, any height-balanced search tree can be used, e. g.,
red-black trees (Cormen et al., 2001, Chap. 13), AVL trees (Goodrich and
Tamassia, 2003, Sect. 9.2), or 2-3 trees (Aho et al., 1983, Sect. 5.4). However,

13More precisely, the complexity of the successor operation essentially determines the
bounds for all query operations.

50

2.4 Dynamization: Inserting and Deleting Leaves

the trees additionally have to support sequential traversals. More precisely,
for the edgeReport operation we need to access all elements following a
given one in order. For this the 2-3 trees in the variant described by Aho
et al. (1983, Sect. 5.4) are well suited: in contrast to red-black trees or AVL
trees, the elements are stored only at the leaves and the internal nodes serve
just as signposts to guide the other operations. The leaves14 are already
linked because it is needed for rebalancing the tree after insertion and dele-
tion.15 Provided that the comparison of two nodes, i. e., the order operation,
takes constant time, insertion, deletion, and determining the successor take
O(log n) time for a 2-3 tree.

As mentioned in Section 2.3.1, the sets S(·) do not provide enough infor-
mation for the edgeReport operations. Each node u2 ∈ S(u1) for u1 ∈ V1

has to be associated with the set of edges that created this entry, i. e., with
the set {(u′1, u2) ∈ E | u′1 ∈ desc(u1)}. (Symmetrically, a node u1 ∈ S(u2)
for u2 ∈ V2 has to be associated with the set {(u1, u′2) ∈ E | u′2 ∈ desc(u2)}.)
As already pointed out in Section 2.3.1, these sets are maintained as doubly
linked lists. In order to facilitate the deletion of edges, all occurrences of an
edge in such lists are stored (in a linked list) within the record representing
the edge.

Level Ancestors in Dynamic Trees

For the edgeExpand operation, as shown in Algorithm 2.1, the ancestor
of a node at a given depth of the tree needs to be determined efficiently.
As both trees are fixed in the approach of Buchsbaum et al. (2000), a data
structure for the static variant of this level ancestor problem (Berkman and
Vishkin, 1994; Bender and Farach-Colton, 2002) is sufficient. But we want
to add and remove leaves and thus we need a level ancestor data structure
supporting these updates. Dietz (1991) proposes a complicated two-level
data structure that provides both level ancestor queries and adding leaves
in O(1) amortized time. The solution of Alstrup and Holm (2000), which
we will use here, is much simpler. Moreover, it improves the bounds for
both queries and updates to O(1) worst-case time.

In a preprocessing phase, Alstrup and Holm compute for each node v
of the tree its depth, the size of the subtree rooted at v, denoted by s(v),
and the rank of v, denoted by r(v). The rank of a node v is defined as the

14In fact, on every level of a 2-3 tree the nodes are linked, but for the leaves we explicitly
need it.

15Red-black trees or AVL trees can be used as well, but their nodes have to be linked
additionally.

51

2 Dynamic Tree Cross Products

maximum integer i such that 2i|depth(v) and s(v) ≥ 2i. Then the following
tables are constructed:

levelanc[v][x] contains the x’s ancestor of v for 0 ≤ x ≤ 2r(v) and
jump[v][i] contains the first proper ancestor of v whose depth is divisible

by 2i for 0 ≤ i < log(depth(v) + 1).

Implemented naively, this preprocessing requires O(n log n) time and
space, where n is the number of nodes in the tree. However, Alstrup and
Holm show that both the time and the space can be improved to O(n). Their
algorithm for determining level ancestors in constant time is remarkably
simple: the jump[][] table is used a constant number of times until a node w
is found that has a rank sufficiently large to have the answer precomputed
in its levelanc[w][] table.

Adding a leaf essentially means to update the two tables, which is easily
possible in O(log n) time and can be improved to O(1) time. Deleting a
leaf is not explicitly mentioned in (Alstrup and Holm, 2000), but it can
be implemented in O(1) time (Alstrup, 2003). Obviously, we could simply
delete the leaf in constant time. The space bound, however, would no longer
be linear in the number of tree nodes. This can be solved by rebuilding the
data structure whenever, for instance, half of the nodes have been deleted.
This takes O(1) amortized time per delete, but using the standard doubling
technique we can distribute it over a sequence of operations such that each
operation is O(1) worst-case.16

Complexity

In summary our data structure for the two-dimensional tree cross product
consists of the following building blocks:

Adjacency lists: For every node, the set of incident edges (both incoming
and outgoing) is stored as a doubly linked list. In order to facilitate
the deletion of an edge the (two) positions in such lists are stored
within the edge record.

Order maintenance data structures: For each tree, a separate order mainte-
nance data structure stores the total order of the nodes. At any time,
this order corresponds to a post-order traversal of the respective tree.
This assures that the descendents of a node u are uniquely determined
by the two extremal nodes min(u) and max(u). All comparisons of

16For our application, it is actually not necessary do be able to add or remove a leaf in O(1)
because updating the other parts of our tree cross product data structure already takes
O(∆).

52

2.4 Dynamization: Inserting and Deleting Leaves

two nodes (of the same tree) are implemented as the corresponding
order query.

Tree representation: Each node contains a reference to its parent, which is null
for the root, and a list of children, which is empty for a leaf. The list of
children is sorted in ascending order. Each node u stores references to
the extremal nodes min(u) and max(u). In order to delete a node in
O(1) time from its parent’s list of children, every node explicitly stores
its position as reference to the respective list container.

Level ancestor data structures: For each tree, a separate level ancestor data
structure capable of adding and deleting leaves is maintained.

Sets S(·): At each node u, the set S(u) is maintained as a 2-3 tree. Under a
key u2 ∈ S(u1) for u1 ∈ V1 (and symmetrically under a key u1 ∈ S(u2)
for u2 ∈ V2) the set of edges that created this entry is stored in a doubly
linked list. In order to facilitate the deletion of an edge all occurrences
in such lists are stored within the edge record in a doubly linked list.

Lemma 2.10 The data structure described above uses O(m2∆) space; it can
be built in O(m2∆ log n) preprocessing time.17

Proof. An edge e = (u1, u2) ∈ E can contribute an entry only to those sets
S(w) where w is an ancestor of either u1 or u2. Therefore, the space needed
for all lists stored in the 2-3 trees together is O(m2∆).

The data structure is built incrementally: each edge e = (u1, u2) ∈ E is
inserted at each ancestor u′2 of u2 into the list stored under the key u1 in the
2-3 tree for the set S(u′2). If the 2-3 tree for S(u′2) does not exist (because
it is empty), it is created; if the key u1 is not found in S(u′2), it is inserted
with an empty list. For the ancestors u′1 of u1 the insertion is performed
symmetrically. Since inserting the edge in the list and storing its position
in the edge record take only constant time, the update at each of the O(2∆)
ancestors takes O(log n) time, which gives a total of O(m2∆ log n).

The additional space for any of the order maintenance data structures
(Bender et al., 2002; Dietz and Sleator, 1987) is linear in the number of el-
ements they contain, i. e., O(n); preprocessing takes O(n) time. The level
ancestor structure also can be preprocessed in linear time and space (Al-
strup and Holm, 2000, Theorem 6). �

17As in the approach of Buchsbaum et al. (2000) (cf. Theorem 2.6), the factor 2 can be omitted
here because the dimension is fixed, but it is no longer negligible if the dimension is part
of the input.

53

2 Dynamic Tree Cross Products

Lemma 2.11 For all u1 ∈ V1, u2 ∈ V2, we can perform edgeQuery(u1, u2) in
O(log n) and edgeReport(u1, u2) in O(log n + k) time, where k is the number
of edges reported.

Proof. As described in Lemma 2.5, edgeQuery(u1, u2) is implemented by
checking whether

successor(S(u1), min(u2)) ≤ max(u2).

Since each set S(·) is stored as a 2-3 tree, the successor operation, and thus
the edgeQuery, takes O(log n) time. Note that the lists stored under the keys
of the sets S(·) are not needed for edgeQuery; the existence of a key between
min(u2) and max(u2) in S(u1) is sufficient, as it exists only if the associated
set of edges is not empty.

The first result of an edgeReport is found similar to an edgeQuery: we
determine s = successor(S(u1), min(u2)); if s is less or equal than max(u2),
we report all associated edges by sequentially scanning the entries in the list
stored under the key s. Since the leaves of the 2-3 trees for the sets S(·) are
linked, we find the keys following s in S(u1) in constant time each; as long
as they are less or equal than max(u2), we report all edges in their lists. �

Lemma 2.12 For all u1 ∈ V1, all u2 ∈ V2, and all j ∈ {1, 2}, we can perform
edgeExpand((u1, u2), j) in O(k log n) time, where k is the number of edges
reported.

Proof. We implement edgeExpand as described in Algorithm 2.1. Let j = 1;
the case j = 2 is symmetric. Let v1, v2, . . . , vl denote the children of u1, in
ascending order, i. e., v1 < v2 < · · · < vl .18 We start with v1 and determine
whether it is connected to u2 by calculating s = successor(S(u2), min(v1)).
If s ≤ max(v1), v1 is reported; if max(v1) < s ≤ max(vl), the ancestor s′

of s among the children of u1 is reported by way of the level ancestor data
structure. This procedure is iterated until vl has been added or s > max(vl);
see Algorithm 2.1. Each successor operation except the last yields a new
result. Since determining the level ancestor takes constant time, we get
O(k log n) time. �

After adding a new edge (u1, u2) to E, all sets S(w) where w is an ancestor
of either u1 or u2 have to be updated. We describe the procedure only for an
ancestor u′1 of u1; for the ancestors of u2, it is performed symmetrically. We

18Note that the children are stored in this order and do not need to be sorted.

54

2.4 Dynamization: Inserting and Deleting Leaves

first search the key u2 in the 2-3 tree for S(u′1). This yields the list of edges
between the subtree of u′1 and the node u2. (If the key is not found, this list is
empty and we insert a new list under the key u2.) Into this list, we insert the
edge (u1, u2) and store the reference to the respective list container within
the edge record (in the list of occurrences).

For deleting an edge (u1, u2), we first delete it from all lists (adjacency lists
and all lists stored in the 2-3 trees) in which it occurs by means of traversing
the list of occurrences stored within the edge record. For every ancestor u′1
of u1 (and symmetrically for every ancestor u′2 of u2), we retrieve the list
stored under the key u2; if it has become empty, we delete the key u2.

Since the edge knows its positions within every list, deletion takes only
constant time. However, there are O(2∆) ancestors and thus O(2∆) such
deletions and, what is more, O(2∆) lookups and deletions in 2-3 trees, which
immediately yields the following lemma:

Lemma 2.13 For all u1 ∈ V1, u2 ∈ V2, inserting a new edge (u1, u2) takes
O(2∆ log n) time. Deleting an edge (u1, u2) ∈ E takes O(2∆ log n) time.19 �

For deleting a leaf u, all incident edges are deleted with deleteEdge, which
implicitly updates all affected sets S(·). Next, the order maintenance and the
level ancestor data structures are updated. Finally, the leaf is removed from
its tree, which takes only constant time, as every node knows its position
in its parent’s list of children. If at an ancestor u′ of u either min(u′) = u
or max(u′) = u, then min(u′) can be set to u’s successor and max(u′) to u’s
predecessor in the ordered list of tree nodes.

When inserting a new leaf u′ as a child of node u, we insert u′ right
before max(u) into the order maintenance structure, add u′ to the level
ancestor data structure, and insert it into the tree as a child of u; all this
takes O(1) time because of the special data structures used. Note that by
placing the new node between min(u) and max(u) these values stay valid
for the node u and thus for all ancestors of u if u already has been an internal
node before. But if u has been a leaf, i. e., max(u) = min(u), we have to
set min(u) = u′. This may cause further updates of the min(·) values
at ancestors of u. Since every node has at most ∆ ancestors, we get the
following lemma:

Lemma 2.14 Deleting a leaf (without any incident edges) and inserting a leaf
take O(∆) time each. �

19Of course, the factor 2 can be omitted here, as the dimension is fixed. If the dimension is
part of the input, however, it is no longer negligible.

55

2 Dynamic Tree Cross Products

Putting Lemmas 2.10, 2.11, 2.12, 2.13, and 2.14 together, we obtain the
following results for the two-dimensional tree cross product problem with
adding and removing leaves:

Theorem 2.15
With O(2∆m) space, we can insert or delete an edge in O(2∆ log n) time,
insert a new leaf or delete a leaf (without incident edges) in O(∆) time, and
perform edgeQuery in O(log n), edgeExpand in O(k log n), and edgeReport
in O(log n + k) time, where k is the number of edges reported. �

Compressed Trees

As already mentioned in Section 2.3.1, Buchsbaum et al. (2000) use com-
pressed trees to improve the space bound and the time bounds for inserting
and deleting edges. This technique could be employed here as well, but
maintaining C(T) subject to insertion and deletion of leaves into the origi-
nal tree T is not straightforward. The problem is that these modifications
change the size of the subtree rooted at an ancestor of the affected node.
Therefore, any tree edge incident to such an ancestor may change its status
from light to heavy and vice versa. In the compressed tree, this results in
adding or removing an internal node. Especially for a new internal node
this is expensive because it has to be equipped with appropriate data struc-
tures, e. g., the set S(·), which is of size O(m).

Gabow (1990) shows how to maintain an approximation C′(T) of the
compressed tree (in the definition of Harel and Tarjan) under newLeaf oper-
ations. This approximation still has the convenient property that its depth
is O(log n), where n is the number of nodes in the tree. Initially, C′(T) is
equal to C(T); as long as for any node w the number of nodes in the subtree
rooted at w has grown by less than a fixed factor α > 1, a new node is sim-
ply attached appropriately. After adding a node v, this condition may be
violated for some ancestors of v; in this case, the one having lowest depth is
recompressed, i. e., its subtree is replaced with the correct compressed tree.
The cost for recompressing a subtree is linear in the number of nodes it con-
tains. It is easy to see that, whenever recompressing in necessary, enough
nodes will have been added to the respective subtree to charge the cost of
the recompression to them at a constant rate. This leads to O(1) amortized
time for newLeaf.

The way Buchsbaum et al. (2000) use compressed trees would also work
with the approximation of Gabow (1990). The only thing they rely on is the
fact that the compressed tree has logarithmic depth, which is true for the

56

2.5 Application to Graph View Maintenance

approximation as well. Recompressing a subtree, however, is too expensive,
because the sets S(·) for all nodes in the subtree have to be recomputed.

2.4.2 Higher Dimensions

The two-dimensional data structure we just have introduced can be gen-
eralized using the same recursive scheme as described in Section 2.3.2. In-
serting or deleting a leaf in some tree Ti does not affect the data stored
at nodes of other trees. Therefore, these two operations are independent
of the dimension; they are implemented like in the two-dimensional case.
Following the proof of Theorem 2.8, we get the following result for the gen-
eral d-dimensional tree cross product problem with adding and removing
leaves:

Theorem 2.16
With O((2∆)d−1m) space, we can insert or delete an edge in O((2∆)d−1 log n)
time, insert a new leaf or delete a leaf (without incident edges) in O(∆) time,
and perform edgeQuery in O(d + log n), edgeExpand in O(d + k log n), and
edgeReport in O(d + log n + k) time, where k is the number of edges re-
ported. �

Table 2.4.2 finally summarizes our results for range searching over tree
cross products with adding and deleting leaves and compares them to the
naive solution and the results of Buchsbaum et al. (2000) (with and without
compressed trees).

2.5 Application to Graph View Maintenance

After having described the solution to the general tree cross product prob-
lem with adding and removing leaves, we apply it to the dynamic leaves
variant of the graph view maintenance problem for a compound digraph
D = (V, E, F). Our technique for modeling compound digraphs as tree
cross products is basically the same as Buchsbaum et al. (2000) used for
clustered graphs. For compound digraphs, however, expanding a node
gets more complicated.

2.5.1 Modeling

Let T = (V, E) denote the inclusion tree of D. We set T1 = T2 = T and
interpret an adjacency edge (u, v) ∈ F as an edge connecting u ∈ T1 and
v ∈ T2; see Figure 2.5.

57

Table
2.1:

Sum
m
ary

and
com

parison
ofthe

results
for

range
searching

over
d-dim

ensionaltree
cross

products.
Let∆

=
m

ax
di=

1 depth(T
i)
and

s
=

m
in{∆

,log
n}.

For
ed

geR
ep

ort
and

ed
geE

x
p
an

d,k
denotes

the
size

ofthe
output.

The
ed

geQ
u
ery

and
ed

geR
ep

ort
bounds

stated
in

(B
uchsbaum

etal.,2000)do
neither

include
the

additive
d
term

s
nor

the
extra

factor2
d−

1,butthey
seem

unavoidable
given

their
description.

N
aive

solution
Buchsbaum

etal.(2000)
This

w
ork

w
ithoutcom

pressed
trees

w
ith

com
pressed

trees

A
dditionalSpace

O
(1)

O
(m

(2∆
) d−

1log
log

n)
O

(m
(2s) d−

1)
O

(m
(2∆

) d−
1)

ed
geQ

u
ery(u)

O
(m

d∆
)

O
(d

+
log

log
n)

O
(d

+
log

n/
log

log
n)

O
(d

+
log

n)
ed

geR
ep

ort(u)
O

(m
d∆

)
O

(d
+

log
log

n
+

k)
O

(d
+

log
n/

log
log

n+
k)

O
(d

+
log

n
+

k)
ed

geE
x
p
an

d(u,j)
O

(m
d∆

)
O

(d
+

k
log

log
n)

O
(d

+
k

log
n/

log
log

n)
O

(d
+

k
log

n)

n
ew

E
d
ge(u)

O
(1)

O
((2∆

) d−
1log

log
n)

O
((2s) d−

1
log

n/
log

log
n)

O
((2∆

) d−
1log

n)
d
eleteE

d
ge(u)

O
(1)

O
((2∆

) d−
1log

log
n)

O
((2s) d−

1
log

n/
log

log
n)

O
((2∆

) d−
1log

n)
n
ew

L
eaf(u)

O
(1)

n/a
n/a

O
(∆

)
d
eleteL

eaf(u)
O

(1)
n/a

n/a
O

(∆
)

2.5 Application to Graph View Maintenance

Furthermore, we store at each internal node v ∈ V the set

N(v) = {(u′, v′) ∈ children(v)2 | (u′, v′) is a derived edge},

i. e., the set of derived edges between two children of v. We maintain each
such set as balanced search tree with respect to the lexicographic order
of edges interpreted as pairs of nodes. Furthermore, we store with every
edge (u′, v′) ∈ N(v) a counter for the number of adjacency edges that are
represented by the derived edge (u′, v′).

T1 T2

Figure 2.5: The compound digraph in Figure 1.6 modeled as a tree cross product.

2.5.2 Complexity

Determining whether there is a derived edge between two nodes u and v
becomes an edgeQuery; newEdge and deleteEdge directly map to the corre-
sponding operations for tree cross products. Inserting or deleting leaves in
the inclusion tree results in a newLeaf or deleteLeaf operation on both T1

and T2.
Contracting a view at a node v is straightforward: all children of v are

removed and v is connected to all former neighbors of children of v.
For expanding a view D[U] at a leaf v of T[U], we would like to use

the edgeExpand operation to determine all children of v inheriting an edge
(v, u) ∈ F〈U〉.20 If u also is a leaf in T[U], edgeExpand((v, u), 1) indeed
yields the correct result, but if u is an internal node, it may happen that too
many children are reported.

20We restrict the discussion to an outgoing edge (v, u) ∈ F〈U〉; the arguments for an incom-
ing edge (u, v) ∈ F〈U〉 are symmetric.

59

2 Dynamic Tree Cross Products

u

v

Figure 2.6: Initial view

u

v

Figure 2.7: View after
contracting the highlighted
node v

u

v

Figure 2.8: Expanding the
edge (v, u) in Figure 2.7
leads to the darker shaded
incorrect edge

Consider, for instance, the compound digraph D = (V, E, F) in Figure 2.6,
which at the same time acts as our initial view D[V] = D. Contracting the
highlighted node v yields the view shown in Figure 2.7. Expanding v again
by simply applying edgeExpand to both incident edges of v in Figure 2.7
results in the set of edges depicted in Figure 2.8. The darker shaded edge in
Figure 2.8 is not correct according to our notion of a view (cf. Definition 1.8).
It emerged from the operation edgeExpand((v, u), 1), which was defined to
return all children x of v such that (x, u) is a derived edge. In this respect,
the darker shaded edge in Figure 2.8 is a perfectly correct result of the
edgeExpand operation. However, it also shows that simply expanding all
incident edges yields too many edges.

Note that Buchsbaum et al. (2000) avoid this problem because they con-
sider the graph view maintenance problem for clustered graphs only. As
opposed to the more general compound digraphs, clustered graphs have
adjacency edges between leaves only. Therefore, every derived edge in a
view of a clustered graph connects two leaves of the view.21

Lemma 2.17 Let D[U] = (U, E[U], F〈U〉) be a view of a compound digraph
D = (V, E, F) and let D[U′] = (U′, E[U′], F〈U′〉) be the view after expanding
a leaf v of T[U], i. e., U′ = U ∪ children(v). A derived edge (u, x) (or (x, u))
with x ∈ children(v) is in F〈U′〉 if and only if u is a leaf in T[U′] or there
exists an edge (u, x′) ∈ F (or (x′, u) ∈ F) such that x′ ∈ desc(x).

Proof. We proof the claim only for an edge (u, x); the arguments for an
edge (x, u) are symmetric. If (u, x) ∈ F〈U′〉, then there exists some edge
(u′, x′) ∈ F with u′ ∈ desc(u) and x′ ∈ desc(x) such that u and x are the
nearest ancestors of u′ and x′ in U′. Therefore, u is a leaf or u′ = u.
21In fact, a view of a clustered graph according to Buchsbaum et al. (2000) is an ordinary

graph consisting only of the leaves and the derived edges between them (cf. Section 1.1).

60

2.5 Application to Graph View Maintenance

Conversely, let (u, x) be a derived edge. If u is a leaf, then (u, x) obviously
is in F〈U′〉. If u is an internal node in T[U′] and there exists an edge (u, x′) ∈
F such that x′ ∈ desc(x), then x is the nearest ancestor of x′ in U′ and u itself
is in U′. Therefore, (u, x′) ∈ F〈U′〉. �

Lemma 2.17 provides a sufficient criterion that a derived edge (resulting
from expanding an edge incident to the node we want to expand) has to
satisfy in order to be incorporated into the expanded view. Therefore, we
implement expand(D[U], v) as shown in Algorithm 2.2. After adding the
children of v and all derived edges N(v) connecting them (see line 3), ev-
ery edge (u, v) and (v, u) in D[U] is expanded. For each child v′ that these
edgeExpand operations yield, it is checked whether the corresponding ex-
panded edge satisfies the criterion of Lemma 2.17. Note that there is an
adjacency edge in D connecting a node in the subtree of v′ to u if and only
if u ∈ S(v′); see lines 6 and 12 in Algorithm 2.2. Finally, the edges (u, v) and
(v, u) are deleted unless they are also adjacency edges in D22; see lines 8
and 14 in Algorithm 2.2.

Algorithm 2.2: expand(D[U], v)
input : view D[U] = (U, E[U], F〈U〉) and leaf v of T[U]
output: view D[U′] = (U′, E[U′], F〈U′〉 with U′ = U ∪ children(v)

U′ ← U ∪ children(v)
E[U′]← E[U] ∪ {(v, v′) | v′ ∈ children(v)}

3 F〈U′〉 ← F〈U〉 ∪ N(v)

foreach (v, u) ∈ F〈U〉 do
foreach v′ ∈ edgeExpand((v, u), 1) do

6 if u is a leaf in T[U′] or u ∈ S(v′) then F〈U′〉 ← F〈U′〉 ∪ {(v′, u)}
end

8 if (v, u) 6∈ F then F〈U′〉 ← F〈U′〉 \ {(v, u)}
end

foreach (u, v) ∈ F〈U〉 do
foreach v′ ∈ edgeExpand((u, v), 2) do

12 if u is a leaf in T[U′] or u ∈ S(v′) then F〈U′〉 ← F〈U′〉 ∪ {(u, v′)}
end

14 if (u, v) 6∈ F then F〈U′〉 ← F〈U′〉 \ {(u, v)}
end

22This can easily be checked by traversing the adjacency list of v.

61

2 Dynamic Tree Cross Products

For a node v ∈ U such that its children are leaves in T[U], we define

Opt(U, v) = ∑
v′∈children(v)

1 + |{(u, v′) ∈ F〈U〉} ∪ {(v′, u) ∈ F〈U〉}|.

In other words, Opt(U, v) counts all children of v and all derived edges
incident to one of them. As the following lemma shows, Opt(U, v) is a
lower bound for the number of elements (nodes or edges) that have to be
added in order to expand v in the view D[U \ children(v)].

Lemma 2.18 Expanding a node v in a view D[U] takes Ω(Opt(U′, v)) time,
where D[U′] denotes the view after expanding.

Proof. The number of nodes and edges that have to be added in the transi-
tion from D[U] to D[U′] are a lower bound for expanding v in D[U]. Ev-
ery added edge is incident to at least one child of v and thus counted in
Opt(U′, v). Since the 1 terms in the definition of Opt(·, ·) account for the
added nodes, Ω(Opt(U′, v)) nodes and edges have to be added. �

Since contracting a node is the inverse of expanding, we get the following
lower bound for contract:

Corollary 2.19 Contracting a node v in a view D[U] takes Ω(Opt(U, v))
time.

Proof. The nodes and edges that have to be removed in the transition from
D[U] to D[U′] are identical to those that have to be added in the inverse
expand operation. Therefore, the claim follows from Lemma 2.18. �

Altogether, we get the following results for the new dynamic leaves vari-
ant of graph view maintenance:

Theorem 2.20
Let ∆ = depth(T). With O(m∆) additional space, we can insert a new leaf
or delete a leaf (without incident edges) in O(∆) time, insert or delete an edge
in O(∆ log n) time, and perform contract(v) in a view D[U] in O(Opt(U, v))
and expand(v) in O(Opt(U′, v)∆ log n) time, where D[U′] is the view after
expanding v in D[U].

Proof. By traversing all edges incident to children of v, we can find the
neighbors of v after contraction. Hence, contracting v takes O(Opt(U, v))
time.

As regards expanding a node v in a view D[U] with Algorithm 2.2, adding
the children of v and the edges connecting two of them, which are stored

62

2.5 Application to Graph View Maintenance

explicitly in the set N(v), is linear in the number of elements added. Every
edgeExpand operation takes O(log n) per result; see Theorem 2.15. The
additional checks according to Lemma 2.17 in lines 6 and 12 of Algorithm 2.2
take O(log n) time each for the lookup in a set S(·). It remains to set the
total number of these results in relation to the optimal number, i. e., to the
number of edges that actually lead to a valid derived edge in the expanded
view D[U′]. Let (v′, u) ∈ F〈U′〉 with v′ ∈ children(v) be such a valid
edge. It follows immediately from Lemma 2.18 that this edge can cause an
invalid result (v′, w) only when expanding an edge (v, w) where w is an
ancestor of u. Every valid result therefore leads to at most ∆ unnecessary
results. Since there are at most O(Opt(U′, v)) valid results, expanding v
takes O(Opt(U′, v)∆ log n) time.

Each adjacency edge (u, v) ∈ F is stored exactly once in a set N(·); more
precisely, it is stored at the nearest common ancestor of u and v. Hence,
all sets N(·) together use O(m) additional space, which does not violate
the O(m∆) space bound. Updating these sets after adding or removing an
adjacency edge (u, v) takes additional O(∆) time for obtaining the nearest
common ancestor w of u and v and O(log n2) = O(log n) time for finding
the corresponding entry (u′, v′) in the set N(w) where u′ and v′ are the
ancestors of u and v among the children of w. The counter associated with
this entry then is incremented or decremented accordingly. (If no entry was
found, a new one is inserted and its counter set to 1; if the counter is 0 after
decrementing, the entry is deleted.) Altogether inserting or deleting an edge
takes O(∆ + log n), which is within the O(∆ log n) bound for inserting and
deleting edges. All other bounds follow immediately from Theorem 2.16.�

2.5.3 Comparison

Table 2.2 compares our results to the approaches of Buchsbaum and West-
brook (2000) and Buchsbaum et al. (2000). Note that both define Opt(·, ·)
without the 1 terms, i. e., they neglect all nodes that have to be added or
removed. This still gives a lower bound for expanding and contracting. The
time bounds they claim for these operations, however, hold only if most
children of v have an incident edge in the expanded view D[U′], i. e., if
there are at most O(Opt(U′, v)− |children(v)|) isolated children in D[U′].

Our solution for the general tree cross product problem with adding and
removing leaves (cf. Theorem 2.16) extends the one of Buchsbaum et al.
(2000). For most operations, the extra cost for this dynamization is roughly
a factor of log n/log log n.23 This accounts for almost all differences between
23Compared to their solution without compressed trees; with compressed trees it is roughly

63

2 Dynamic Tree Cross Products

the results of Buchsbaum et al. and ours shown in Table 2.2, because they
basically use the same technique for modeling the problem of graph view
maintenance as a tree cross product. The extra factor ∆ for expand, however,
is owed to the fact that we generalized the problem of graph view mainte-
nance from clustered graphs to compound digraphs (cf. Definition 1.8). The
former have adjacency edges only between leaves in the inclusion hierarchy
and thus the extra condition of Lemma 2.17 for the results of edgeExpand
is trivially satisfied, i. e., every result of an edgeExpand operation in Algo-
rithm 2.2 yields a valid edge. Note that we could eliminate this factor in our
solution by restricting our graph model to clustered graphs. Adding a leaf
in a clustered graph, however, would be less natural and more complicated
than it is in a compound digraph: only if an existing leaf does not have any
incident edges, a new leaf may be attached to it. In a compound digraph
this is no problem at all: the former leaf simply becomes an internal node
with incident edges.

For clustered graphs, Buchsbaum and Westbrook (2000) describe a dif-
ferent solution for the problem of graph view maintenance in the dynamic
graph variant, i. e., with a dynamic set of adjacency edges, but without
adding or removing leaves. In their basic solution, they explicitly store ev-
ery possible derived edge and link them appropriately to facilitate expand
and contract operations. More precisely, they keep at each derived edge
(u, v) references to all derived edges between children of u and v in a left
expansion set L(u, v) and references to those between u and children of v in
a right expansion set R(u, v). L(u, v) and R(u, v) thus represent the precom-
puted results of edgeExpand((u, v), 1) and edgeExpand((u, v), 2), respec-
tively. As in our solution, the set of derived edges between children of an
internal node v are stored in a set N(v).

Contracting and expanding are similar to our approach. The main differ-
ence is that the results of the edgeExpand operations in Algorithm 2.2 are
already precomputed and stored explicitly in the left and right expansion
sets. This gives optimal time not only for contracting like in our approach
but also for expanding a node. After inserting a new edge (u, v), all O(∆2)
derived edges between ancestors of u and v are generated if they do not
already exist. In order to check this efficiently, the set of derived edges is
maintained as dictionary storing for each derived edge (u, v) the number of
adjacency edges it represents in a counter c(u, v). For deleting an edge, all
O(∆2) combinations of ancestors are looked up in the dictionary and their
counters are decremented; if a counter becomes 0 the corresponding derived

a factor of log log n.

64

2.6 Summary

edge is deleted. If the dictionary is implemented with dynamic perfect hash-
ing (Dietzfelbinger et al., 1994), inserting and deleting an edge takes O(∆2)
expected time, whereas with an implementation as balanced search tree
these operations take O(∆2 log n) time. Either way, the additional space
is O(m∆2). Buchsbaum and Westbrook (2000, Theorem 4.1) then improve
this naive variant by compressing the inclusion tree as already discussed in
Section 2.3.1. Essentially, this replaces the factor ∆ with s = min{log n, ∆}
in the above bounds; see Table 2.2.

2.6 Summary

In this chapter, an efficient data structure for range searching over tree
cross products has been presented. It supports insertion and deletion of
leaves and thus is more dynamic than existing solutions. As summarized
in Table 2.4.2, it can compete with the approach of Buchsbaum et al. (2000),
which it extends. So far it is the only data structure for range searching over
tree cross products with a dynamic node set. Its application to graph view
maintenance has partially solved the dynamic graph and tree variant, an
open problem in (Buchsbaum and Westbrook, 2000). Table 2.2 shows that
our solution can compare with the more static ones (Buchsbaum and West-
brook, 2000; Buchsbaum et al., 2000), but additionally supports insertion
and deletion of graph nodes.

65

Table
2.2:R

esults
and

com
parison

for
the

graph
view

m
aintenance

problem
.
Let∆

=
depth(T

),s
=

m
in{∆

,log
n},and

O
pt(U

,v)
=

∑
v ′∈

children(v) 1
+
|{(u,v ′)

∈
F〈U
〉}
∪
{(v ′,u)

∈
F〈U
〉}|.

For
ex

p
an

d(v),D
[U
′]denotes

the
view

after
expanding

v
in

D
[U

].
The

bounds
labeled

w
ith

exp
are

expected,allothers
are

w
orst-case.

Buchsbaum
and

W
estbrook

(2000)

Buchsbaum
etal.(2000)

This
w

ork

w
ithoutcom

pressed
trees

w
ith

com
pressed

trees

Space
O

(m
s 2)

O
(m

∆
log

log
n)

O
(m

s)
O

(m
∆

)

ex
p
an

d(v)
O

(O
pt(U

′,v))
O

(O
pt(U

′,v)log
log

n)
O

(O
pt(U

′,v)
log

n/
log

log
n)

O
(O

pt(U
′,v)∆

log
n)

con
tract(v)

O
(O

pt(U
,v))

O
(O

pt(U
,v))

O
(O

pt(U
,v))

O
(O

pt(U
,v))

n
ew

E
d
ge(u,v)

O
exp(s 2log

n)
O

(∆
log

log
n)

O
(s

log
n/

log
log

n)
O

(∆
log

n)
d
eleteE

d
ge(u,v)

O
exp(s 2log

n)
O

(∆
log

log
n)

O
(s

log
n/

log
log

n)
O

(∆
log

n)
n
ew

L
eaf(u)

n/a
n/a

n/a
O

(∆
)

d
eleteL

eaf(u)
n/a

n/a
n/a

O
(∆

)

3
Visualization

For the efficient visual navigation of compound digraphs, the data struc-
ture described in Chapter 2 is a vital building block because it ensures

the responsiveness of an interactive application. Another aspect, which
should not be underestimated, is the adequate visualization of expanding
and contracting. It is not only important how efficient the underlying data
structure is, but also how “efficiently” the user can follow these operations
visually. With a poor visualization, it takes the user quite a long time to
become familiar with the drawing again (cf. Section 1.3.4).

Our scenario is as follows: the user starts with an initial layout of some
view D[U], and then iteratively applies expand or contract operations. The
challenge is to produce a new layout of the view after each such operation
efficiently as regards both the time for the calculation and the time for the
user to re-familiarize with it. The obvious solution is redrawing the entire
graph after each operation; unfortunately, it is neither efficient nor will it
preserve the user’s mental map as already mentioned in Section 1.3.3 (cf.
Figure 1.16). The basic idea therefore is to update the drawing locally after
expanding or contracting, which is more efficient and preserves the user’s
mental map better.

Section 1.3.2 mentions various algorithms for nested drawings of hierar-
chically structured graphs in general and compound digraphs in particular.
Although devising updates for any of them basically is possible, we have
chosen the popular layered drawing style. As already described in Sec-
tion 1.3.1, nearly all algorithms for layered drawings of digraphs are based
on the classical approach of Sugiyama et al. (1981) consisting of four basic
steps. First, the node set is partitioned into horizontal layers such that as
many edges as possible point from top to bottom. Second, the edges are nor-

67

3 Visualization

malized such that every edge connects only nodes on adjacent layers. Third,
the nodes on each layer are reordered in order to minimize the number of
crossings. Finally, the nodes’ exact positions within this order are deter-
mined with respect to common aesthetic criteria such as few edge bends or
balancing nodes among their neighbors.

Among the two prominent generalizations of this classical approach to
compound digraphs (Sugiyama and Misue, 1991; Sander, 1999), we have
chosen the one of Sugiyama and Misue (1991) as basis for an update scheme.
This algorithm, briefly recalled in Section 3.1, also consists of four steps,
corresponding to those of the classical algorithm for layered drawings of
digraphs (Sugiyama et al., 1981). Besides the standard conventions for lay-
ered drawings (nodes are placed on horizontal levels and edges point from
top to bottom), it adopts the nested drawing conventions (ND1)–(ND3)
introduced in Section 1.3.2: nodes are drawn as axis-parallel rectangles, an
inclusion edge (u, v) is depicted by the geometrical inclusion of the rectangle
for v within the one for u, and the rectangles of unrelated nodes are disjoint.
The user starts with a reasonably abstract initial view that is drawn with the
original algorithm. After every expand or contract operation, the interme-
diate results and auxiliary structures used in the four steps of the previous
run are adjusted with our new update scheme described in Section 3.2.

In this context of expanding and contracting nodes in nested, layered
drawings, we already have introduced the four properties (MM0)–(MM3)
(see Section 1.3.4) that constitute our notion of preserving the mental map.
Essentially, we demand that all nodes that are not affected by the expand
or contract operation stay on their levels (MM1) with their relative order
unchanged (MM2) and that expanded edges take the same course as the
corresponding contracted edge (MM3). Since expand and contract are se-
mantically inverse, we demand that they are also visually inverse, i. e., that
a drawing does not change upon expanding a node and immediately con-
tracting it again (or vice versa) (MM0). Because of its locality, our new
update scheme for the algorithm of Sugiyama and Misue (1991) preserves
the user’s mental map perfectly as regards these four properties.1

3.1 Static Layered Drawings of Compound Digraphs

This section briefly describes the original algorithm of Sugiyama and Misue
(1991) for layered drawings of compound digraphs because the proposed
update scheme works on its intermediate results.

1A preliminary version of the material in this chapter appears in (Raitner, 2004b).

68

3.1 Static Layered Drawings of Compound Digraphs

!

≺

Figure 3.1: Small example of derived edges in a compound digraph D (the inclusion
hierarchy is depicted as tree consisting of the dashed edges). The two edges labeled
≺ and � are derived from the solid adjacency edge between the two leaves.

3.1.1 Step I: Hierarchization

Input of this step is the original compound digraph D = (V, E, F); the
result is the assigned compound digraph DA = (V, E, FA, clev). The layer
assignment function clev : V → ⋃

i∈N Ni maps each node v ∈ V to its com-
pound layer clev(v), i. e., the layers are sequences of integers. For clev(v) =
(n1, . . . , ni) ∈ Ni, let tail(clev(v)) = ni denote the last integer in the se-
quence and head(clev(v)) = (n1, . . . , ni−1) the subsequence up to but not
including tail(clev(v)). For a correct layer assignment, it is required that
clev(root(T)) = (1), where T = (V, E) is the inclusion tree of D, and that
head(clev(v)) = clev(u) for every inclusion edge (u, v) ∈ F. The adja-
cency edges FA of the assigned compound digraph result from orienting the
original adjacency edges F from lower to higher layer with respect to the
lexicographical order.

This step uses the derived compound digraph DD = (V, E, FD, type) as an
auxiliary graph; it is identical to D except for the adjacency edges FD with
their types type : FD → {≺,�}. Both the adjacency edges FD and their
types are derived from the original adjacency edges F: let (u, v) ∈ F and
let a be the nearest common ancestor of u and v in the inclusion tree; let
a = u0, u1, . . . , uk = u and a = v0, v1, . . . , vl = v denote the unique paths (in
the inclusion tree) from a to u and from a to v. In DD this results in derived
adjacency edges (u1, v1) ∈ FD, . . . , (um, vm) ∈ FD, where m = min(k, l). The
edge (um, vm) has type(um, vm) =≺; all others are of type�. In other words,
every original adjacency edge (u, v) ∈ F is replaced with edges between
those ancestors of u and v having equal depth. The deepest such edge is
of type ≺; all others of type �; see Figure 3.1. Note that multiple edges
between the same pair of nodes are unnecessary; instead, only one edge is
stored and its type is updated to reflect the most restrictive condition, where
≺ is more restrictive than �.

69

3 Visualization

The different types of edges are considered appropriately in the layer as-
signment algorithm: if an edge (u′, v′) ∈ FD has type ≺, the layer of u′ is
chosen strictly less than the layer of v′, whereas u′ and v′ may also reside on
the same layer if (u′, v′) has type �. For the original compound digraph D,
this means that every edge (u, v) ∈ F leads from a lower to a strictly higher
layer because of the one ≺ edge; the ancestors of u and v, however, are kept
on the same layer as long as possible. Such an assignment is possible only if
all cycles of the derived compound digraph DD entirely consist of � edges.
Otherwise, some edges of DD have to be deleted. Finding the minimal num-
ber of such edges, often referred to as the feedback arc set problem (Garey and
Johnson, 1979, p. 192), is an NP-complete problem. Consequently, we can-
not efficiently determine the minimal number of edges breaking all cycles
in DD and thus have to employ any of the heuristics for this well studied
problem; see (Bastert and Matuszewski, 2001, pp. 91–96). Sugiyama and
Misue (1991) do not use any elaborate heuristic2, yet they take into account
the different types of edges: edges of type � are eliminated before those
of type ≺ and, among edges of type ≺, original edges, i. e., edges that are
present in D as well, are eliminated before derived edges. The resulting
cycle-free compound digraph is DF = (V, E, FF, type).

Compound layers are assigned to DF as follows: the root is placed on
layer (1); then children of already placed nodes are treated recursively. Note
that, unlike other algorithms on trees, the children of all nodes on the same
layer are always processed in a common recursive call of the layer assign-
ment procedure. Since the parents’ layers of the nodes processed in such a
recursive call are already fixed, it suffices to determine the local layer of each
child v, i. e., tail(clev(v)). Therefore, the subgraph of DF induced by these
children is built; the local layers of the children then are determined by a
standard layer assignment algorithm that takes into account the two types
of edges. The compound layer of a child v, clev(v), is built by appending
its local layer to its parent’s compound layer, clev(parent(v)).

After having assigned all nodes to layers, the adjacency edges F are ori-
ented from lower to higher layer and thus yield the adjacency edges FA of
the assigned compound digraph DA = (V, E, FA, clev); see Figure 3.2 for an
example of such a layer assignment.

Let the complexity of this step be O(fI(n)) for some function fI(n) of the
size n of the input D.

2It is no problem to substitute their heuristic by a more advanced.

70

3.1 Static Layered Drawings of Compound Digraphs

1.1.2

1

1.2

1.1.1

1.1.3

1.2.1

1.2.2

1.1
1.1.3.1

1.1.3.2

Figure 3.2: Example of a layer assignment.

3.1.2 Step II: Normalization

In this step, all adjacency edges FA of the assigned compound digraph DA

are made proper. The result is the proper assigned compound digraph DP =
(VP, EP, FP, clev).

Definition 3.1. An adjacency edge (u, v) ∈ FA is proper if proper edge

clev(parent(u)) = clev(parent(v)) and (P1)

tail(clev(v)) = tail(clev(u)) + 1, (P2)

i. e., the parents lie on the same layer and the children’s local layers differ by
one.

If parent(u) = parent(v), condition (P1) is satisfied trivially and thus con-
dition (P2) can be established by replacing the edge with a path of dummy
nodes that are siblings of u and v; see Figure 3.3.3

If parent(u) 6= parent(v) but clev(parent(u)) = clev(parent(v)), this
path of dummy nodes is put into another dummy node p lying on the same
layer as parent(u) and parent(v); see Figure 3.4. Note that this determines
the depth of p in the inclusion tree, but not its place in the inclusion hierar-
chy, i. e., p’s parent. Neither parent(u) nor parent(v) is practical because in
the final drawing the edge would be closer to either u or v, which would
not be justified. The nearest common ancestor of u and v is the best choice,
but in general it does not have the right depth to act as the direct ancestor
of p; therefore, ancestors of p are inserted as needed.

3Incidentally, this is similar to replacing long edges in layered drawings of ordinary di-
graphs; see (Sugiyama et al., 1981; Bastert and Matuszewski, 2001).

71

3 Visualization

1.2

1

1.1

1.4

1.3

1.5

u

v

Figure 3.3: An improper edge for which
parent(u) = parent(v) is made proper
with a path of dummy nodes that are
siblings of u and v.

1.2

1

1.1

1.4

1.3

1.5 v

u p

Figure 3.4: If parent(u) 6= parent(v)
but clev(parent(u)) = clev(parent(v)),
the path is placed into another dummy
node p on the layer of parent(u) and
parent(v).

If clev(parent(u)) 6= clev(parent(v)), as depicted in Figure 3.5, a dummy
node complex consisting of dummy nodes p and c is inserted such that p
is the parent of c and p is a sibling of parent(u), i. e., parent(c) = p and
parent(p) = parent(parent(u)). The edge (u, v) is split into edges (u, c) and
(p, v). The layers of p and c are chosen such that the edge (u, c) is proper,
i. e., clev(p) = clev(parent(u)) and clev(c) = clev(u) + 1 (introducing a
new bottom layer if necessary); see Figure 3.6. At the target node v the
replacement works analogously (introducing a new top layer if necessary).
The edge (p, v) still may not be proper, but by applying this technique
iteratively all edges (u, v) violating condition (P1) are finally reduced to an
improper edge (u′, v′) with clev(parent(u′)) = clev(parent(v′)) (or even
parent(u′) = parent(v′)); see Figure 3.7. As described above, this improper
edge is replaced with a path of dummy nodes; see Figure 3.8.

The complexity of this step is O(k), where k is the number of dummy
nodes added.

3.1.3 Step III: Crossing Reduction

Given the proper assigned compound digraph DP, this step calculates the
relative order of the nodes on each layer. The goal is to minimize the number
of edge crossings, which is a NP-hard problem (Eades and Whitesides, 1994;
Eades and Wormald, 1994) even for an ordinary DAG with only two layers
one of which is fixed (one sided crossing minimization).

Since inclusion edges shall be drawn by the inclusion of the correspond-
ing rectangles, the children of an internal node must form a contiguous
block on all of their layers. Therefore, instead of a global order of all nodes
on a layer, for every internal node, only the local orders of its children on

72

3.1 Static Layered Drawings of Compound Digraphs

1.1.2

1.3

1.1.1.1

1.1.1.2
1.1.11.1

1.3.2

1.3.1

1.2
1

u

v

Figure 3.5: An improper edge that vio-
lates condition (P1).

1.1.2

1.3

1.1.1.1

1.1.1.2
1.1.11.1

1.3.2

1.3.1

1.2
1

u

v

p

c

Figure 3.6: A dummy node complex
consisting of parent p and child c is
inserted and the improper edge is re-
placed with two edges the first of which
is proper.

1.1.2

1.3

1.1.1.1

1.1.1.2
1.1.11.1

1.3.2

1.3.1

1.2
1

u

v

Figure 3.7: Iterating this procedure ends
with an improper edge that fulfills condi-
tion (P1).

1.1.2

1.3

1.1.1.1

1.1.1.2
1.1.11.1

1.3.2

1.3.1

1.2
1

u

v

Figure 3.8: The complete sequence of
dummy nodes and proper edges.

their layers are determined. The result of this step is the ordered compound
digraph DO = (VP, EP, FP, clev, σ), where σ describes for each internal node
u ∈ VP the order of children(u) on their layers.

The node ordering algorithm starts at the root and traverses the inclusion
tree depth-first towards the leaves. For an internal node u, the compound
digraph induced by the descendants of u is reduced to an ordinary lay-
ered digraph, the local hierarchy for u, by shrinking each child of u into
a single node; see Figure 3.9. Because all edges of DP are proper, this
leads to two types of edges in the local hierarchy: edges between nodes
on adjacent layers and edges connecting nodes on the same layer. Note
that for the latter multiple edges between two nodes are avoided by keep-
ing only one of them, which is annotated with the degree of multiplic-
ity.

73

3 Visualization

(2, 0) 2 1 (0, 1)

(0, 1)

Figure 3.9: Local hierarchy (right) for the highlighted node (left). The edge labels are
the multiplicities of the edges; the node labels (l, r) of a node u denote the λ and ρ
values, where λ(u) = l and ρ(u) = r.

A descendant u′ of u may be adjacent to a node v′ that is no descendant
of u. By the definition of a proper edge, it follows that parent(u′) and
parent(v′) lie on the same layer. Note that by construction the layer of
an ancestor of some node w always is an initial subsequence of w’s layer.
Therefore, the respective ancestors of u′ and v′ also lie on the same layer. As
a consequence, there exists an ancestor v of v′ such that v and u lie on the
same layer. Since the algorithm works depth-first, it has already ordered the
children of all ancestors of u. In other words, it is known whether v—and
therefore v′—lies to the left or to the right of u. In order to consider this
in the crossing reduction of the local hierarchy every child u′ is annotated
with two values, λ(u′) and ρ(u′) counting the edges going to the left and to
the right, respectively; see Figure 3.9.

The crossing reduction of the local hierarchy starts with a preprocessing
step—the so-called splitting method—pinning the children u′ with λ(u′)−
ρ(u′) > 0 to the left end and those with λ(u′)− ρ(u′) < 0 to the right end of
their layers; the larger |λ(u′)− ρ(u′)|, the nearer to the end u′ is placed. For
the remaining nodes the crossings are minimized with a modified barycen-
ter heuristic (Sugiyama and Misue, 1991) that takes into account the horizon-
tal edges. The barycenter heuristic is one of the standard heuristics for the
NP-hard problem of one sided crossing minimization. It moves each node
on the variable layer to the barycenter of its neighbors on the fixed layer.
Usually, it is part of a layer-by-layer—top-down or bottom-up—sweep that
restricts the graph to the current layer, which is variable, and the previous
layer, which is fixed. See (Bastert and Matuszewski, 2001, Chap. 5.4) for a
detailed description of this technique and (Forster, 2004) for an extension of
it to clustered graphs.

Let the complexity of this step be O(fIII(n)) for some function fIII(n) of
the size n of the input DP.

74

3.1 Static Layered Drawings of Compound Digraphs

Figure 3.10: Determining the height of a node individually (based on the heights
of its children) leads to edge-node crossings (left). These crossings can be avoided
by choosing the same height for all nodes on the same layer (middle). With an
additional bend at the boundary of a layer, the advantages of both style can easily
be combined (right).

3.1.4 Step IV: Metric Layout

The purpose of this step is to assign coordinates (x and y) and dimensions
(width and height) to the nodes of the ordered compound digraph DO. So
far the nodes and dummy nodes have been assigned to horizontal layers
and their relative order within every layer has been fixed. Note that the
vertical position essentially is determined by the layer assignment. The
dimensions of a rectangle can easily be calculated as the bounding box of its
children once their coordinates are fixed. The effect of this, however, is that
nodes lying on the same layer may have different heights4, which can lead
to the unpleasant situation of an edge crossing a node; see Figure 3.10 (left).
Therefore, instead of individual heights only the height of the entire layer is
calculated, i. e., all nodes on the same layer have uniform height determined
by the tallest node on the layer. It is also possible to combine both styles
with additional bends on the boundaries of the layer; see Figure 3.10 (right).
Although Sugiyama and Misue (1991) do not describe this part in detail,
their drawings suggest that they also use this combination. Since the routing
of an edge is completely determined by the position of its dummy nodes,
the only degree of freedom remains the exact horizontal position of every
node within the given relative order.

The horizontal positions are computed in two phases: first, the children
receive local coordinates relative to their parent’s position; second, a depth
first traversal of the inclusion tree sums up the local coordinates to absolute

4They also have different widths which has to be considered appropriately in the horizontal
coordinate assignment.

75

3 Visualization

coordinates. The first phase is a recursive algorithm; for an internal node
u, it is applied to all children of u first, thus determining their widths and
heights. Starting with all children as far to the left as possible within the
relative order, the local coordinates then are optimized by applying the so-
called priority layout method to the metrical local hierarchy, which is the local
hierarchy from the previous step without the horizontal edges.

Since the metrical local hierarchy is an ordinary layered digraph, this
two-phase approach reduces the horizontal coordinate assignment prob-
lem for compound digraphs to the analogous problem for layered digraphs.
More precisely, given a layered, ordered digraph the problem is to find
x-coordinates for all nodes, such that the minimum separation constraint is
satisfied, i. e., the coordinates of two nodes on the same layer differ by at
least some given value δ. According to (Brandes and Köpf, 2001) a horizon-
tal coordinate assignment should additionally satisfy the following criteria,
which seem to have great influence on the readability of the layered draw-
ing with a given ordering:

◦ edges should have small length,
◦ the position of a node should be balanced between upper and lower

neighbors,
◦ and long edges should have few bends, i. e., should be as straight as

possible.

Originally, Sugiyama et al. (1981) formulate this problem as a quadratic
program, for which it can be time-consuming to find a solution on large
instances. Therefore, Sugiyama and Misue (1991) propose a faster, iterative
heuristic, the priority layout method. Similar to the barycenter heuristic
for minimizing crossings, the priority layout method tries to improve the
nodes’ positions by moving them—as far as possible without changing the
order on the layers—to their respective (metrical) barycenters. Each node
has a certain priority reflecting the importance of this nodes being placed
at the barycenter of its neighbors. When a node is moved, it may displace
all nodes with lower priority to increase the available space. By giving the
highest priority to dummy nodes they are more likely to end up at their
optimal position, which favors the straightness of long edges.

As summarized by Brandes and Köpf (2001), there are also other optimiza-
tion approaches, apart from the quadratic program of Sugiyama et al. (1981).
Eades et al. (1996b), for instance, use a system of linear equations that places
each node at the mean coordinate of its neighbors averaging the influence
of upper and lower neighbors. Some implementations (Gutwenger et al.,

76

3.1 Static Layered Drawings of Compound Digraphs

2001; Ellson et al., 2001) minimize the length of the edges with a piecewise
linear objective function subject to the minimum separation constraint. In
order to straighten long edges, each edge gets a weight reflecting the impor-
tance of drawing that edge vertically. The more dummy nodes are incident
with the edge, the more weight it gets, i. e., edges connecting two dummy
nodes, which are the inner segments of a long edge, have highest prior-
ity. Also, some variations and improvements of the priority layout method
have been proposed. Sander (1999), for instance, considers the average co-
ordinates of all neighbors instead of treating upper and lower neighbors
separately; rather than shifting nodes according to their priority, they are
grouped and their common movement is determined as the average of the
individual shifts.

Brandes and Köpf (2001) present a linear time, non-iterative heuristic
approach that can compare well with the above mentioned in terms of as-
signment quality. It guarantees that an edge connecting two dummy nodes
is vertical and thus that a long edge has at most two bends. This heuristic
consists of two phases. First, four vertical alignments are calculated each
prescribing which edges are drawn vertically. Note that the optimal, i. e.,
the most balanced, position of a node u with upper (or lower) neighbors
u1, . . . , uk is to align it vertically with its median neighbor. An alignment
encodes these restrictions for all nodes with respect to upper (or lower)
neighbors. Whenever conflicts in an alignment occur, they are resolved
either in leftmost or rightmost fashion. In either case, the conflict resolu-
tion favors inner segments, i. e., edges connecting two dummy nodes are
always vertical.5 This results in four different alignments: one for each com-
bination of upper and lower neighbors with leftmost and rightmost conflict
resolution.

A horizontal coordinate assignment then is determined for each vertical
alignment separately, which inherently has a certain bias toward either up-
per or lower neighbors with either leftmost or rightmost conflict resolution.
We describe only the case of upward alignment to the left; the other three
cases are symmetric. For this horizontal compaction, the nodes are partitioned
into maximal sets of vertically aligned nodes called blocks. The block graph is
obtained by inserting a directed edge from a node to its predecessor on the
same layer and by contracting blocks into single nodes. Note that the block
graph is acyclic. Brandes and Köpf (2001) subdivide it into classes, defined
by the sinks, and apply a variant of longest path layering within each class,

5The case that two inner segments are in conflict, which prohibits one of them being
vertical, can be avoided by swapping their lower neighbors until the crossing is no
longer between two inner segments.

77

3 Visualization

i. e., the relative coordinate of a block with respect to the sink in this class is
the maximum coordinate of the preceding blocks in the same class.

In the second phase, the four separate assignments are combined in order
to average out their individual directional bias. The layouts are aligned
with the one of smallest width among them. Then, the average median6 of
the four candidate coordinates of each node is chosen as its final coordinate.

Its linear running time and its simplicity together with its appealing re-
sults make the approach of Brandes and Köpf (2001) a good candidate for
replacing the priority layout method suggested by Sugiyama and Misue
(1991). Our modified algorithm for the metrical layout therefore works as
follows: for each node v we determine recursively the width and height of
each child; then, the local coordinates of the metrical local hierarchy of v
are determined with the algorithm of Brandes and Köpf (2001). Note that
in (Brandes and Köpf, 2001) all nodes have uniform dimensions, whereas
in the metrical local hierarchies the sizes of the nodes differ. This general-
ization, however, is straightforward. Finally, the absolute coordinates are
summed up in a top-down traversal of the inclusion tree.

In the final drawing the dummy nodes have to be replaced with bends
of the corresponding edge. Sugiyama and Misue (1991) suggest to derive
the bends from the positions of the dummy nodes by setting the width of
dummy nodes to zero in the first phase of the above algorithm. In our
setting, i. e., with the guarantees of the horizontal coordinate assignment of
Brandes and Köpf, this leads to the following tight lower and upper bound
on the number of bends of a single edge.

Lemma 3.2 Let u, v ∈ V with clev(u) = (x1, . . . , xr, u1, . . . , uk) and clev(v) =
(x1, . . . , xr, v1, . . . , vl) such that r is maximal, i. e., x1, . . . , xr is the longest com-
mon initial subsequence of clev(u) and clev(v). If the width of the dummy
nodes is set to zero, an adjacency edge (u, v) ∈ FA has between 2(k + l)− 4
and 2(k + l)− 2 bends.

Proof. Consider the case k = 1 and l = 1, which means that the parents of
u and v lie on the same layer. Hence, (u, v) is made proper with a path of
dummy nodes that are either siblings of u and v (if u and v have the same
parent) or reside in another dummy node on the same layer as the parents of
u and v (cf. Figures 3.3 and 3.4, respectively). In either case, the whole path
of dummy nodes belongs to the same metrical local hierarchy. Since the
horizontal coordinate assignment of Brandes and Köpf (2001) guarantees a

6For k values x1 ≤ · · · ≤ xk the average median is (xb(k+1)/2c + xd(k+1)/2e)/2.

78

3.1 Static Layered Drawings of Compound Digraphs

c

p

Figure 3.11: Setting the width of the dummy node complex consisting of p and
c (left) to zero necessarily leads to the two bends highlighted with black squares
(right).

maximum of two bends, the edge (u, v) has between 0 = 2(k + l)− 4 and
2 = 2(k + l)− 2 bends.

Suppose that the claim already holds for k− 1 (k > 1) and l. Since k >

1, the parents of u and v cannot lie on the same layer. As described in
Section 3.1.2, a dummy node complex consisting of a node p with one child
c is inserted such that p lies on the same layer as parent(u); the edge (u, v)
is split into edges (u, c) and (p, v). Since clev(p) = (x1, . . . , xr, u1, . . . , uk−1),
we know by induction that the edge (p, v) has between 2((k− 1) + l)− 4 =
2(k + l) − 6 and 2((k − 1) + l) − 2 = 2(k + l) − 4 bends. Shrinking the
width of the dummy nodes p and c to zero necessarily leads to two bends;
see Figure 3.11. Therefore, the edge (u, v) has between 2(k + l) − 4 and
2(k + l)− 2 bends. For the replacement at the target v, the arguments are
symmetrical. �

Theorem 3.3
The metrical layout algorithm of Sugiyama and Misue (1991) with the horizon-
tal coordinate assignment of Brandes and Köpf (2001) takes O(n) time, where
n is the size of the input DO. The total number of edge bends is O(m∆).

Proof. The number of bends follows immediately from Lemma 3.2 because
every edge can have at most O(∆) bends. Since every node is contained
in exactly one local hierarchy and the horizontal coordinate assignment of
Brandes and Köpf (2001) is linear in the size of the respective local hierarchy,
the complexity of this step is linear in the size of the input DO. �

79

3 Visualization

The two bends for the dummy node complex in Figure 3.11 appear to be
unnecessary. In this special case they indeed could (and should) be replaced
with a straight line. In general, however, some sibling of p might be lying
right of it. The bends then assure that no such sibling is crossed by the
edge (u, v). As regards readability, avoiding such crossings seems to be at
least as important as minimizing the number of bends. Thus, the seemingly
unnecessary bends should be removed only in special cases like the one
shown in Figure 3.11.

Other bends, however, can always be avoided. Recall that if u already lies
on the bottom layer within its parent, an extra bottom layer is introduced for
the child c of a dummy node p. (Symmetrically, an extra top layer is created
if v lies on the top layer.) As such an extra layer contains only dummy
nodes, its height can be chosen freely. In particular, it can be set to zero,
which means that the two bends for the respective dummy node complexes
overlap.

3.2 Expansion

Let D[U] = (U, E[U], F〈U〉) be a view of a compound digraph D = (V, E, F)
and assume that D[U] already has been drawn with the static algorithm of
Sugiyama and Misue (1991) (or has been updated with the proposed up-
date scheme). Now consider a leaf v ∈ U that shall be expanded, resulting
in a new view D[U′] = (U′, E[U′], F〈U′〉), with U′ = U ∪ children(v). In
order to simplify the notation in the description of the update scheme, let
D = (V, E, F) and D′ = (V′, E′, F′) denote the views D[U] and D[U′], re-
spectively.

It is assumed that the combinatorial structure of D′ can be determined
efficiently from D, which is where the data structures for maintaining hierar-
chical graph views, described in Chapter 2, come into play. In the following,
our novel method for updating the drawing of D to a drawing of D′ by
locally adjusting the intermediate results of steps I–IV is described.

There are various goals that the proposed update scheme tries to achieve:
first, it shall be efficient; second, the user’s mental map measured in terms
of the properties (MM0)–(MM3) introduced in Section 1.3.4 shall be pre-
served; and third, the updated drawing shall be “nice” in terms of common
aesthetic criteria such as small area, short edges, few edge crossings, or few
edge bends. All these goals are measured in relation to redrawing the new
view entirely with the original algorithm because this is the straightforward
alternative to our local updates of the old drawing. This means that the

80

3.2 Expansion

update should be more efficient and better preserving the mental map than
redrawing, yet the updated drawing shall resemble a complete redrawing
as close as possible.

3.2.1 Step I: Hierarchization

In this step, the assigned compound digraph DA = (V, E, FA, clev) for the
old view D has to be updated to the assigned compound digraph DA

′ =
(V′, E′, FA

′, clev′) for the new view D′. For preserving the mental map,
property (MM1) demands that the layers of all old nodes u ∈ V are not
changed. Hence, only for the children of the expanded node v appropriate
layers have to be found, i. e., clev(u) = clev′(u) for all u ∈ V.

As shown in Algorithm 3.1, updating the assigned compound digraph
starts in line 1 with expanding v in DA with Algorithm 2.2. Note, that DA is
not necessarily a correct view of D because of the reversed adjacency edges,
which do not correspond to original adjacency edges in D. Algorithm 2.2,
however, is defined only for views of D because it relies on the fact that
all edges incident to v are derived and thus edgeExpand can be applied to
them. Therefore, line 1 in Algorithm 3.1 should not be taken literally; it
rather means that v is expanded as described in Algorithm 2.2, but instead
of expanding a reversed adjacency edge the original edge is expanded and
the resulting expanded edges are reversed again. The result is the same as
if for each reversed edge in DA all corresponding adjacency edges in D also
had been reversed, i. e., as if DA was a correct view of D.

After v has been expanded, all old nodes receive the same layer as in DA.
For an edge (u, v) ∈ FA either (u, v) ∈ F or (v, u) ∈ F because adjacency
edges in DA are always oriented from lower to higher layer regardless of
their original direction in D. Since all old nodes stay on their layers, each
expanded edge necessarily inherits the direction of the respective contracted
edge (regardless of its original direction in D′). Nevertheless, the edges
between the children of v can introduce new cycles, but any such cycle
consists entirely of these edges. Therefore, the cycle removal in DA

′ can be
restricted to the subgraph induced by the children of v, which is an ordinary
graph; see line 5 in Algorithm 3.1.

After the new cycles have been removed, the local layers of the new
children are determined on the subgraph induced by the children of v; see
line 6 in Algorithm 3.1. This subgraph is an ordinary directed acyclic graph,
just like the subgraphs that act as input for the original recursive layer
assignment algorithm in Section 3.1.1; therefore, the new children’s local
layers are calculated on this subgraph using an ordinary layer assignment

81

3 Visualization

Algorithm 3.1: updateLevels(DA, v)
input : DA = (V, E, FA, clev): assigned compound digraph,

v: leaf to be expanded
output: DA

′ = (V′, E′, FA
′, clev′): assigned compound digraph with v

expanded

1 DA
′ ← expand(DA, v)

forall u ∈ V do clev′(u) = clev(u)

let Ec = {(u′, v′) ∈ FA
′ | {u′, v′} ⊆ children(v)}

let G = (children(v), Ec)

5 determine edges Er ⊆ Ec such that G′ = (children(v), Ec \ Er) is acyclic
6 determine a local layer assignment lev : children(v)→N for G′

forall v′ ∈ children(v) do clev′(v′) = append(clev(v), lev(v′))

forall (u, w) ∈ Er do
if clev′(w) < clev′(u) then FA

′ ← FA
′ ∪ {(w, u)} \ {(u, w)}

end

method as described in Section 3.1.1. This assures that every edge between
two children of v that survived the cycle removal points from lower to
higher layer. That this is also true for expanded edges is shown by the
following lemma:

Lemma 3.4 Let v′ ∈ children(v) and u 6∈ children(v). For an expanded edge
(v′, u) (or (u, v′)), clev′(v′) < clev′(u) (or clev′(v′) > clev′(u)) regardless of
the local layer assigned to v′.

Proof. We prove the claim for the edge (v′, u); for (u, v′) the arguments are
symmetric. Before expanding v the edge (v′, u) was represented by the
contracted edge (v, u); therefore, clev(v) < clev(u). Since all old nodes stay
on their layers, i. e., clev(u) = clev′(u) for all u ∈ V, we get clev′(v) <

clev′(u). Because of the lexicographical order of the layers, it follows that
clev′(v′) < clev′(u) regardless of the local layer of v′. �

Lemma 3.4 proves that local layer assignment is sufficient in the cho-
sen setting where all old nodes stay on their layers. In order to evalu-
ate the quality of this update, it remains to inspect the dissimilarity of the
updated assigned compound digraph DA

′ compared to the assigned com-
pound digraph resulting from re-applying the hierarchization algorithm of
Section 3.1.1 to the new view D′. The differences can be seen best by com-
paring the two derived compound digraphs: the one that re-applying the
hierarchization internally uses and the one that conceptually stands behind

82

3.2 Expansion

u

v

Figure 3.12: Situation be-
fore expanding v: the ad-
jacency edge (u, v) leads
to a type ≺ derived edge
(parent(u), v); therefore,
parent(u) is being placed
on a layer above v.

u

v

Figure 3.13: Result of up-
dating the layer assign-
ment: all old nodes stay
on their layers.

u v

Figure 3.14: Result of
re-applying the hier-
archization algorithm:
nodes parent(u) and v are
placed on the same layer.

our update, although we did not construct it explicitly because the assigned
compound digraph is updated directly in Algorithm 3.1.

Consider, for instance, an expanded edge (u, v′) with v′ ∈ children(v)
and u 6∈ children(v) such that depth(v) < depth(u); see Figure 3.12 for an
example. If the derived compound digraph for D′ is built entirely anew, as
described in Section 3.1.1, this edge leads to a derived edge (u′, v′) of type≺,
where u′ is the ancestor of u with depth(u′) = depth(v′). Before expanding
v, the edge (u, v′) was represented by the contracted edge (u, v), which in
turn led to a derived edge (parent(u′), v) of type ≺. After expanding v, the
edge (u′, v′) becomes the deepest derived edge; therefore, the type of the
edge (parent(u′), v) changes from ≺ to �. In other words, if the derived
compound digraph for D′ is built entirely anew, nodes v and parent(u′)
are placed on the same layer—given that the other edges permit this—,
whereas they are placed on different layers before expanding v. Since the
update keeps all old nodes on their former layers, v and parent(u′) remain
on different layers, although they could have been placed on the same. The
effect of this can be seen by comparing Figure 3.13, which shows the layer
assignment produced by the update, and Figure 3.14, which is the result
of re-applying the hierarchization: the adjacency edge (u, v) in Figure 3.12
leads to a type ≺ derived edge (parent(u), v), which results in parent(u)
being placed on a layer above v; if the edge has type �, parent(u) and v are
placed on the same layer, as shown in Figure 3.14.

Locality Property 1 Let k denote the number of nodes and edges added to D

by expanding v. The complexity of updating the assigned compound digraph
DA is O(fI(k)), compared to O(fI(n + k)) for re-applying step I to D′, where
n is the size of D. All old nodes V stay on their former layer (MM1).

83

3 Visualization

3.2.2 Step II: Normalization

The proper assigned compound digraph DP = (VP, EP, FP, clev) for the old
assigned compound digraph DA is updated as shown in Algorithm 3.2. In
line 1, Algorithm 3.1 first is applied to expand node v in DP and to deter-
mine the layers of v’s children. As already defined in Section 3.2.1, this step
must not be taken literally because DP is no correct view of D: compared
to the original view D, the adjacency edges of DP could be reversed or re-
placed with a sequence of dummy nodes and edges or both. Expanding v in
DP with Algorithm 2.2, which is the first step of Algorithm 3.1, therefore is
not well-defined because the edges incident to v in DP in general do not cor-
respond to derived edges in D and thus cannot be expanded. The intended
result of expanding an edge incident to v in DP, however, is obvious. Each
edge between v and a dummy node u uniquely corresponds to an adjacency
edge in D, which can be expanded and thus yields the children inheriting
this edge. In DP

′, we simply insert an edge between each of these children
and the dummy node u in the right direction.

After expanding v and assigning layers to the new children of v with
Algorithm 3.1, every improper adjacency edge is necessarily incident to at
least one child of v because the layers of the old nodes V are unchanged.
The edges that are incident with two children of v are easy: they are made
proper with a simple sequence of dummy nodes because both children
trivially satisfy the condition (P1), namely that their parents, which is v in
this case, lie on the same layer.

By expanding v in the old proper assigned compound digraph DP we
intentionally deviate from what re-applying the normalization to the up-
dated assigned compound digraph DA would have yielded. Consider, for
instance, an (improper) edge (v, u) ∈ FA with its corresponding (improper)
expanded edges (v1, u), . . . , (vk, u) ∈ FA

′. In DP the edge (v, u) has been
made proper with a sequence of dummy nodes as in the example shown
in Figure 3.15. Applying the normalization to DA

′ would replace each ex-
panded edges (vi, u) with a distinct sequence of dummy nodes; see Fig-
ure 3.16. Note that every such sequence is—except for an extra dummy
node complex on the layer of v—identical to the one for edge (v, u).

One goal of the proposed update scheme is that expanded edges take the
same course as the corresponding contracted edge (MM3), which means
that during the crossing reduction the dummy nodes for the expanded
edges have to be treated as blocks. Therefore, it is unnecessary to normalize
each expanded edge separately in this step. Instead, we expand v within
DP, which does not expand the edge (v, u) entirely, but only up to its first

84

Algorithm 3.2: updateProper(DP, v)
input : DP = (VP, EP, FP, clev): proper assigned compound digraph,

v: leaf to be expanded
output: DP

′ = (VP
′, EP

′, FP
′, clev′) proper assigned compound digraph with v

expanded

1 DP
′ ← updateLevels(DP, v)

foreach improper edge (u′, v′) ∈ FP
′ such that {u′, v′} ⊆ children(v) do

make (u′, v′) proper
end

foreach contracted edge (v, u) ∈ FP do
// insert dummy node pu on v’s layer
VP
′ ← VP

′ ∪ {pu}, EP
′ ← EP

′ ∪ {(parent(v), pu)}, clev′(pu) = clev′(v)
FP
′ ← FP

′ ∪ {(pu, u)}
foreach corresponding expanded edge (v′, u) do

let l = append(clev′(pu), tail(clev′(v′)) + 1)
if there is not already a child c of pu on layer l then

VP
′ ← VP

′ ∪ {c}, EP
′ ← EP

′ ∪ {(pu, c)}
clev′(c) = l

end
FP
′ ← FP

′ ∪ {(v′, c)} \ {(v′, u)}
end

end

foreach contracted edge (u, v) ∈ FP do
// symmetric to (v, u) ∈ FP
VP
′ ← VP

′ ∪ {pu}, EP
′ ← EP

′ ∪ {(parent(v), pu)}, clev′(pu) = clev′(v)
FP
′ ← FP

′ ∪ {(u, pu)}
foreach corresponding expanded edge (u, v′) do

let l = append(clev′(pu), tail(clev′(v′))− 1)
if there is not already a child c of pu on layer l then

VP
′ ← VP

′ ∪ {c}, EP
′ ← EP

′ ∪ {(pu, c)}
clev′(c) = l

end
FP
′ ← FP

′ ∪ {(c, v′)} \ {(u, v′)}
end

end

3 Visualization

dummy node; see Figure 3.17. The dummy nodes for the old edge (v, u)
thereby become representatives for a block of dummy nodes for the ex-
panded edges. At the end of the crossing reduction this “mistake” will be
corrected by splitting up each such representative into the corresponding
set of dummy nodes, i. e., after the crossing reduction each expanded edge
is represented by a distinct sequence of dummy nodes as in Figure 3.16.

Now, let du be the first dummy node of the edge (v, u) (the procedure
is symmetric for an edge (u, v)). Expanding the proper edge (v, du) ∈ FP

yields expanded edges (v1, du), . . . , (vk, du) ∈ FP
′ that are all improper; see

Figure 3.17. Making these edges proper as described in Section 3.1.2 would
generate for each edge (vi, du) one dummy node pi on the layer of v with
one child ci whose local layer is one greater than the local layer of vi. This is,
however, unnecessary, as the remainder of all edges (vi, u) is not expanded,
but rather treated as one block. Therefore, all pi are conceptually merged
into a single block, i. e., only one dummy node pu is inserted on the layer of
v together with an edge (pu, du). Then, each edge (vi, du) is replaced with
an edge (vi, ci), where ci is a child of pu on a local layer one greater than the
local layer of vi; see Figure 3.18. Since the dummy nodes have to be split
anyway after the crossing reduction, one node ci per local layer is sufficient;
see Algorithm 3.2 for a detailed description.

Locality Property 2 The complexity ofmaking DP
′ proper again after expand-

ing v in DP is O(l), where l is the number of additional dummy nodes needed.
On the other hand, the complexity of normalizing the assigned compound
digraph DA

′ as a whole is O(k + l) where k is the number of dummy nodes
in DP.

3.2.3 Step III: Crossing Reduction

In this step the ordered compound digraph DO = (VP, EP, FP, clev, σ) is
updated. Note that the only difference between DO and DP is σ that encodes
for each internal node the order of its children on their layers. Therefore, the
actual challenge in this step is to update σ to σ′. As preserving the mental
map demands preserving the order of all old nodes (MM2), only for the
nodes that have been added during the update from DP to DP

′ appropriate
positions on their layers have to be determined. These nodes are either
children of v—including dummy nodes for edges between two children
of v—or dummy nodes that belong to an expanded edge between a child
of v and a node u 6∈ children(v). As described in Section 3.1.3, the node
ordering algorithm recursively calculates a local order for the children of

86

v

du

Figure 3.15: Dummy nodes and edges
for the contracted edge before expand-
ing v.

v

Figure 3.16: Dummy nodes and edges
for the corresponding expanded edges.

v

du

Figure 3.17: Improper expanded edges
after expanding the contracted edge up
to the first dummy node du.

du

v

pu

Figure 3.18: Dummy nodes for the ex-
panded edges grouped into pu.

3 Visualization

an internal node. Hence, determining the order of the children of v is just a
matter of applying this algorithm to the subtree rooted at v. A precondition,
however, is that the children of all ancestors of v already have been ordered.
Therefore, the positions of dummy nodes that are not children of v have to
be fixed prior to ordering the children of v.

Consider an edge (v, u) ∈ FA (the arguments for an edge (u, v) ∈ FA are
symmetric) such that children v1, . . . , vk inherit this edge after expanding
v. Remember that in the update from DP to DP

′ (cf. Algorithm 3.2) (v, u) is
expanded only up to its first dummy node du and that the expanded edges
are made proper with a single dummy node pu (with some children on
appropriate layers). Being not expanded, the old dummy nodes of the edge
(v, u) are reused for representing blocks of dummy nodes of the expanded
edges (vi, u); compare Figures 3.15 and 3.16. Since they already have valid
positions and the relative order of all old nodes is preserved, all expanded
edges (vi, u) inherit the course of the edge (v, u).

The dummy node pu, however, is new and lacks a valid position.7 In other
words, the set of nodes that have to be arranged and that are not children of
v consists of one dummy node pu for every neighbor u of v in DA. They are
all siblings of v and lie on the same layer as v. Therefore, the original node
ordering algorithm (cf. Section 3.1.3) applied to parent(v) and modified
such that only the new dummy nodes and the children of v are allowed to
move could be used. In order to avoid the overhead of processing a lot of
fixed nodes, however, a closer examination of the node ordering algorithm
as regards the positions of the new dummy nodes is necessary.

Since an edge (v, u) ∈ FA is expanded only up to its first dummy node
du, we can simplify the following description and assume without loss of
generality that (v, u) is proper.

Definition 3.5. A new dummy node pu for the expanded edges of an edgelocal and external
(v, u) or (u, v) is local if parent(v) = parent(u); otherwise it is external.

Consider an external dummy node pu first. Since the edge (v, u) is proper,
parent(v) and parent(u) must lie on the same layer. In the local hierarchy
induced by parent(v)’s children, pu has λ(pu)− ρ(pu) = ±1, depending on
whether parent(u) lies to the left (+1) or to the right (−1) of parent(v). The
splitting method, as described in Section 3.1.3, places pu to the left or right
end of the layer, with the exact position determined by the λ(pu)− ρ(pu)
value; see line 3 in Algorithm 3.3.

7Its children are also new, but as there is at most one child per layer, ordering them is
trivial.

88

Algorithm 3.3: updateOrdered(DO, v)

input : DO = (VP, EP, FP, clev, σ): ordered proper assigned compound
digraph,
v: leaf to be expanded

output: DO
′ = (VP

′, EP
′, FP

′, clev′, σ′) ordered proper assigned compound
digraph with v expanded

DO
′ ← updateProper(DO, v), σ′ ← σ

foreach external dummy node pu do
3 insert pu into σ′ according to λ(pu)− ρ(pu)

end

let L be the set of all local dummy nodes
6 insert L ∪ {v} sorted according to the barycenter values at v’s position into σ′

7 apply ordering algorithm of Section 3.1.3 to the local hierarchy of v

foreach new (local or external) dummy node pu do
// pu represents a block of expanded edges (u, v1), . . . , (u, vk)
// or (v1, u), . . . , (vk, u) with vi ∈ children(v)
split pu into dummy nodes p1, . . . , pk
let vπ↑(1), . . . , vπ↑(k) be the order of v1, . . . , vk from bottom to top layer and
from left to right within a layer
let vπ↓(1), . . . , vπ↓(k) be the order of v1, . . . , vk from top to bottom layer and
from left to right within a layer

if pu represents an incoming edge (u, v) then
if pu lies left of v in σ then

insert the split dummy nodes at the position of pu into σ′ in left to
right order pπ↑(1), . . . , pπ↑(k)

else
insert the split dummy nodes at the position of pu into σ′ in left to
right order pπ↓(1), . . . , pπ↓(k)

end
else

if pu lies left of v in σ then
insert the split dummy nodes at the position of pu into σ′ in left to
right order pπ↓(1), . . . , pπ↓(k)

else
insert the split dummy nodes at the position of pu into σ′ in left to
right order pπ↑(1), . . . , pπ↑(k)

end
end

split the remaining dummy nodes of the contracted edge (u, v) or (v, u)
and propagate the order of the pi to them.

end

vpu p1 p2 p3 p4 v

Figure 3.19: Dummy node pu for an incoming edge (u, v) lying left of v (left). The
left to right order of p1, . . . , pk for the expanded edges (u, v1), . . . , (u, vk) (k = 4 in
this example) is derived from the order of the children vi from bottom to top layer
and from left to right within a layer (right).

v pu p1 p2 p3 p4v

Figure 3.20: Dummy node pu for an incoming edge (u, v) lying right of v (left). The
left to right order of p1, . . . , pk for the expanded edges (u, v1), . . . , (u, vk) (k = 4 in
this example) is derived from the order of the children vi from top to bottom layer
and from left to right within a layer (right).

vpu p1 p2 p3 p4 v

Figure 3.21: Dummy node pu for an outgoing edge (v, u) lying left of v (left). The
left to right order of p1, . . . , pk for the expanded edges (v1, u), . . . , (vk, u) (k = 4 in
this example) is derived from the order of the children vi from top to bottom layer
and from left to right within a layer (right).

v pu p1 p2 p3 p4v

Figure 3.22: Dummy node pu for an outgoing edge (v, u) lying right of v (left). The
left to right order of p1, . . . , pk for the expanded edges (v1, u), . . . , (vk, u) (k = 4 in
this example) is derived from the order of the children vi from bottom to top layer
and from left to right within a layer (right).

3.2 Expansion

Remark. Let pw be another external dummy node for the proper edge (v, w)
such that λ(pu)− ρ(pu) = λ(pw)− ρ(pw). Then pu and pw are indistinguish-
able in the splitting method; they are pinned to one end in arbitrary relative
order. This order, however, should be the same as for the nodes u and w,
which both lie on the same layer. This problem, incidentally, is immanent to
the original algorithm of Sugiyama and Misue (1991); it is not specific to the
proposed update scheme. However, it can be alleviated by taking the relative
order of the end nodes as secondary sorting criterion in the splitting method.

After the splitting method, all external dummy nodes are fixed; it remains
to do the same for the local ones. Let pu and pw now denote two local
dummy nodes inserted after expanding the proper edges (v, u) and (v, w).
Then u and w lie on the same layer and thus determine the relative order of
pu and pw. Essentially, the only degree of freedom is whether to place pu or
pw right or left of v, as it makes no sense to have some old node x between
pu and v: otherwise the edges pu represents would cross x. In other words,
the new local dummy nodes and v itself must form a contiguous block. In
the local hierarchy induced by children(parent(v)), a dummy node pu has
only one outgoing edge; hence, its barycenter is identical to the position of
u. Therefore, it is sufficient to sort the new local dummy nodes together
with v according to their barycenters and insert them as contiguous block
at v’s old position in σ; see line 6 in Algorithm 3.3.

It remains to correct the mistake we made by not fully expanding the
edges incident with v in the previous step; see Algorithm 3.2. Up to this
point, all the expanded edges (vi, u) of the edge (v, u) are represented by
one sequence of dummy nodes as shown, for instance, in Figure 3.18. Each
dummy node is split such that finally there is a distinct sequence for every
expanded edge (vi, u) as shown, for instance, in Figure 3.16. For the order σ

this essentially means that a block of dummy nodes takes the position of the
dummy node it replaces. Nevertheless, we need to determine the relative
order of the dummy nodes for the expanded edges within these blocks. This
order, however, depends on the positions of v’s children, which can easily
be determined with the node ordering algorithm of Section 3.1.3 applied to
the local hierarchy of v; see line 7 in Algorithm 3.3.

Let p1, . . . , pk denote the dummy nodes that emanate from splitting pu.
It suffices to determine their relative order because the remaining dummy
nodes in the sequence for the expanded edges (v1, u), . . . , (vk, u) need to be
ordered accordingly to avoid unnecessary crossing. The relative order of
p1, . . . , pk is derived from the positions of the children v1, . . . , vk. If pu lies
right of v and if vπ(1), . . . , vπ(k) is the order of v’s children from bottom to top

91

3 Visualization

and within the same layer from left to right, then pπ(1), . . . , pπ(k) is the order
of the dummy nodes from left to right; see Figure 3.22. The case that pu lies
left of v as well as the two cases for an incoming edge (u, v) are symmetric;
see Figures 3.19, 3.20, and 3.21. Finally, the remaining old dummy nodes of
the edge (v, u) are split accordingly, i. e., they inherit the order of the pi; see
Algorithm 3.3.8

Locality Property 3 Let k denote the number of elements added to DP by
expanding v including the dummy nodes that are generated by splitting the old
dummy nodes of contracted edges used as representatives. The complexity of
updating the local order σ is roughly O(fIII(k)), compared to O(fIII(n + k))
for re-applying step III to DP

′, where n is the size of DP. The relative order
of all old nodes V is preserved and expanded edges take the same course as
the corresponding contracted edge, i. e., properties (MM2) and (MM3) for
preserving the mental map are satisfied.

3.2.4 Step IV: Metric Layout

Although the results of all other steps could be updated locally, this is not en-
tirely possible for the metric layout. The reason is that expanding v changes
the width and height of v, which leads to adjustments of the local coordi-
nates for v’s siblings; this changes the width and height of parent(v), and
so on up to the root. The children of v, however, are not the only nodes that
have been added due to expanding; there are also new dummy nodes for
the expanded edges, which may be scattered across the whole graph. On
the other hand, if the subtree rooted at some node u contains neither chil-
dren of v nor new dummy nodes, the local coordinates in the entire subtree
rooted at u are not affected and thus can be reused; see Figure 3.23.

As described in Section 3.1.4, the metric layout consists of two steps: com-
puting local coordinates followed by a depth-first traversal of the inclusion
tree to sum them up to absolute coordinates. Therefore, the update of the
metric layout also has two steps: first, the local coordinates of all new nodes
and their ancestors are adjusted; then, the second step is used unalteredly.
For the updates of the local coordinates basically the same recursive proce-

8Note that it can happen that the corresponding contracted edge (v, u) also is part of the
expanded view, because there exists an original adjacency edge (v, u′) ∈ F such that
u′ ∈ desc(u). In this case, which is not mentioned explicitly in Algorithm 3.3, a separate
sequence of dummy nodes for the edge (v, u) needs to be split off. The best position of
these dummy nodes is either before or after the block of dummy nodes for the expanded
edges. For an outgoing edge (v, u) with pu lying right of v, for instance, these dummy
nodes obviously have to be placed before the blocks.

92

3.3 Contraction

Figure 3.23: The local coordinates for the black nodes can be reused (right) after
expanding the lighter shaded node (left).

dure as in Section 3.1.4 is used; the only difference is that recursive calls are
made only for subtrees that need to be adjusted, i. e., those containing either
children of v or new dummy nodes. This can easily be done by first travers-
ing the tree bottom-up from every new node and marking all reached nodes
and then restricting the recursive calls to the marked nodes.

Locality Property 4 Let n denote the size of DO
′. In the worst case, the com-

plexity of updating is the same as for re-applying this step to DO
′ as a whole,

i. e., O(n). The final depth-first traversal to sum up the absolute coordinates is
completely applied in any case. The local coordinates, however, are adjusted
only for ancestors of new nodes.

3.3 Contraction

Again, let D = (V, E, F) be a view of a compound digraph D = (V, E, F).
Contracting a node v ∈ V that has been expanded with the above up-
date scheme is straightforward: after contraction, i. e., in the view D′ =
(V′, E′, F′), all nodes are old because V′ = V \ children(v). Hence, the layer
assignment clev and the node order σ just need to be restricted to V′, which
ensures that properties (MM1) and (MM2) for preserving the mental map
are satisfied. The position of the dummy nodes for a derived edge incident
to v is given by the position of the blocks of the corresponding expanded
edges. Thus, the contracted edge takes the same course as the expanded
edges as required by property (MM3). Since the width and height of v has
changed, the metric layout has to be updated as described in Section 3.2.4.

If we assume that v has been expanded in a view D′′ just before this
contract operation, it is obvious that D′ and D′′ contain the same nodes.
As both expanding and contracting satisfy properties (MM1) and (MM2),

93

3 Visualization

these nodes stay on their respective layers in unchanged relative order dur-
ing both operations. Also, the reusing of dummy node positions and the
grouping of expanded edges ensures property (MM3) during both opera-
tions. In other words, before the metric layout all nodes of the contracted
view D′—even dummy nodes—reside on the same layer in the same rela-
tive order as in D′′. Therefore, the input for the metric layout before and
after both operations is identical, and thus its output, i. e., the final draw-
ing, will be identical. This means that expanding and contracting are also
visually inverse as required by property (MM0).

Locality Property 5 Let k denote the number of elements that are removed
from DP during the update to DP

′ as a result of the contraction of node v.
The number of elements removed from the other (intermediate) compound
digraphs is atmost k. Therefore, updating the drawing after contracting a node
v that has been expanded as described in Section 3.2 takes O(k) for steps I
to III. Step IV is the same as after expanding; see Locality Property 4. The
user’s mental map is preserved by satisfying (MM1)–(MM3). Furthermore,
expanding and contracting are visually inverse as defined by (MM0).

Contraction is more complicated for nodes v that have not been expanded
with our update scheme for two reasons. First, the dummy nodes for edges
(v1, u), . . . , (vk, u) incident with children vi ∈ children(v) (1 ≤ i ≤ k) need
not form contiguous blocks on their layers, but after contraction all these
edges are represented by one edge (v, u). This is a minor problem that can
be solved by declaring one of the edges (v1, u), . . . , (vk, u) as representative
and thus reusing its dummy nodes for the contracted edge (v, u). Expand-
ing and contracting, however, are no longer visually inverse then.

The main reason why contracting a node that has not been expanded
before is more complicated is the following. Consider a child v′ of v with
an edge (u, v′) such that v and parent(u) lie on the same layer, e. g., as in
Figure 3.14. As pointed out in Section 3.2.1, our method of updating the
layer assignment prevents this situation, yet it is possible in the layout of
the initial view. Note that, as the deepest derived edge always is of type ≺,
the layer assignment assures that for every edge (x, y) the compound layers
clev(x) and clev(y) differ—after a common start sequence—by at least one
position (cf. Section 3.1.1). The derived edge (u, v), representing (u, v′)
after contracting v, would violate this invariant, because clev(v) would be
a subsequence of clev(u). Unfortunately, the normalization, described in
Section 3.1.2, relies on this invariant. This problem also can be observed in
the derived compound digraph: before contracting v the deepest edge, the
one of type ≺, was adjacent to v′ and is removed; therefore, the type of the

94

3.4 Experimental Results

derived edge between v and the ancestor of u at the same depth as v would
have to be adjusted from � to ≺, which in general leads to substantial
changes in the layer assignment and thus destroys the user’s mental map;
compare Figures 3.13 and 3.14.

The easiest way to deal with this problem is to allow contraction only
for nodes that have been expanded before, i. e., no node of the initial view
can be contracted. Another way is to modify the algorithm of Sugiyama
and Misue (1991) used for the initial view as regards the way the derived
compound digraph is constructed: instead of generating derived edges for
an edge (u, v) between all those ancestors of u and v that have equal depth,
only the highest derived edge, i. e., the one between the children of the
nearest common ancestor of u and v, is created and assigned the type ≺.
The consequence is that nodes with descendants that are connected never
lie on the same layer and thus the layout is less compact.

3.4 Experimental Results

The static layout algorithm of Sugiyama and Misue (1991) with the met-
ric layout of Brandes and Köpf (2001) and its update scheme described
above have been implemented by Pröpster (2005) as part of the interac-
tive compound (di-)graph editing framework described in Chapter 4. The
following experimental results have been created with a stand-alone, i. e.,
non-interactive, variant of this implementation.

Since the alternative to the proposed update scheme is redrawing the en-
tire graph with the static algorithm, its efficiency and quality are analyzed
competitively, e. g., the computation time of the update is measured in re-
lation to the time needed for redrawing the entire graph. As regards the
quality of the drawing, the area and the number of crossings have been cho-
sen as two indicators. On the one hand, the area is an important factor in the
context of exploring large compound (di-)graphs, where the screen real es-
tate often is a bottleneck. On the other hand, experimental results (Purchase
et al., 1997; Purchase, 1998) suggest that crossings have great influence on
the readability of drawings.

As described in (Pröpster, 2005), a randomly generated compound di-
graph first is completely contracted, i. e., the view contains only the root.
Then, all nodes are expanded successively (in breadth-first order of the in-
clusion tree) and the drawing is adjusted with our update scheme after each
expand operation. Finally, the thus generated drawing is compared to the
result of applying the static algorithm once to the fully expanded compound

95

3 Visualization

digraph.
The following parameters were varied during the random generation of

the compound digraphs: the number of nodes n, the average number of
children of internal nodes γ, and the density δ, which is defined as the
number of adjacency edges divided by the maximum number of pairs of
unrelated nodes.

The inclusion tree is generated breadth-first starting with the root, which
is put into a queue. As long as the total number of nodes does not exceed
n, children for the next node in the queue are inserted. Their number is
determined between 1 and 2γ in a random experiment with a binomial
distribution having γ as mean. After the inclusion tree has been generated,
the adjacency edges are inserted randomly with probability δ between the
pairs of unrelated nodes.

In our experiments, 1, 500 compound digraphs were thus created; ten for
every combination of the following values for the three parameters: n ∈
{20, 35, 50, 75, 100}, γ ∈ {2, 4, 6, 8, 10, 15}, and δ ∈ {0.01, 0.05, 0.1, 0.2, 0.3}.

As far as the area of the drawing is concerned, it can be said that our
update scheme performs nearly as well as the static algorithm. On the
average, the iterative expanding as described above needs about 2 % more
area than the static algorithm applied directly to the fully expanded graph.
This small increase in area is almost independent of the number of nodes, as
shown in Figure 3.24. Also, neither the density δ nor the average number of
children γ has great influence on it; see Figures 3.25 and 3.26, respectively.

Remark. All diagrams in this section are of the same type. The grey bar is a
70 %-quantile centered at the median, which is depicted as a small horizontal
line dividing the grey bar. This means that the grey bar represents 70 % of all
data, 35 % on each side of the median. The vertical line is the 90 %-quantile
centered at the median.

Although the values are scattered over a wide range (from −25 % to
+50 %), it is astonishing that the average increase in area is not very sig-
nificant. One would actually expect that the update scheme needs more
area than the static algorithm because updating the layer assignment often
needs additional layers, as (MM1) demands to keep all old nodes on their
former layer during the expanding; see Figures 3.13 and 3.14 in Section 3.2.1.
This effect indeed is existent, though barely noticeable. The more adjacency
edges the graph has, the more likely it is that two arbitrary nodes (or their
predecessors) are connected by a type ≺ edge in the derived compound
digraph and thus are placed on different layers anyway. This means that
the denser the graph gets, the smaller is the increase in area, which can

96

Figure 3.24: Area needed by our update scheme relative to the area of the static
algorithm as affected by the number of nodes n.

Figure 3.25: Area needed by our update scheme relative to the area of the static
algorithm as affected by the density δ.

Figure 3.26: Area needed by our update scheme relative to the area of the static
algorithm as affected by the average number of children γ.

3 Visualization

be observed in Figure 3.25. Furthermore, if the hierarchy tree is relatively
deep, i. e., if γ is small, many expand operations are needed until the graph
is fully expanded and thus the increase in area accumulates as shown in
Figure 3.26.

As regards the relative number of crossings9, i. e., the number of crossings
in the drawing after fully expanding the graph with our update scheme di-
vided by the number of crossings in the static layout of the entire graph,
our update scheme produces approximately 12 % fewer crossings on the
average. Moreover, neither the number of nodes n, nor the density δ, nor
the average number of children γ has significant influence on this decrease;
see Figures 3.27, 3.28, and 3.29, respectively. Also, the scatter is relatively
small in all three diagrams: for nearly all parameters, the 70 %-quantile cen-
tered at the median entirely lies below 0 %, which means that for 85 % of
the graphs10 our update scheme produces less crossings. One reason for
this improvement appears to be the way the update scheme expands edges.
Recall that the overall course of the expanded edges is inherited from the
corresponding contracted edge and that the relative order among the ex-
panded edges is derived such that they cannot cross; see Algorithm 3.3 and
Figures 3.19, 3.20, 3.21, and 3.22 in Section 3.2.3. In the static layout, all ex-
panded edges are treated alike whether they belong to the same contracted
edge or not.11 This can lead to unnecessary crossing that our update scheme
effectively avoids.

The performance of our update scheme is measured as the time updat-
ing the view compared to the time for re-applying the static algorithm. On
the average (both over all graphs and all expand operations), our update
scheme is about twice as fast. The larger a graph gets, the more local are
the updates and thus the larger are the reusable parts of the intermediate re-
sults. Therefore, our update scheme performs better as the number of nodes
increases; see Figure 3.30. As regards the density of the graph, an opposite
trend in recognizable in Figure 3.31: the performance gain decreases with
increasing density. The reason appears to be that more adjacency edges im-
ply more expanded edges and thus a larger fraction of the graph is affected,
which counteracts the locality of our updates. Similarly, more children re-
sult in less locality and thus slightly less performance gain; see Figure 3.32.

9This includes both ordinary crossings among edges and crossings between an edge and a
node that is no predecessor of either end of the edge.

10Note that the upper end of the vertical bar indicates the value below which 85 % of our
data lie, as the 70 % quantile is centered at the median.

11In fact, the term “contracted edge” does not make much sense in the static layout. This
information is not available and thus cannot be exploited.

98

Figure 3.27: Number of crossings produced by our update scheme relative to the
number of crossings in the static algorithm as affected by the number of nodes n.

Figure 3.28: Number of crossings produced by our update scheme relative to the
number of crossings in the static algorithm as affected by the density δ.

Figure 3.29: Number of crossings produced by our update scheme relative to the
number of crossings in the static algorithm as affected by the average number of
children γ.

Figure 3.30: Average running time of a single expand operation relative to the time
for re-applying the static algorithm to the respective view as affected by the number
of nodes n.

Figure 3.31: Average running time of a single expand operation relative to the time
for re-applying the static algorithm to the respective view as affected by the density
δ.

Figure 3.32: Average running time of a single expand operation relative to the time
for re-applying the static algorithm to the respective view as affected by the average
number of children γ.

3.4 Experimental Results

There are some outliers in all three diagrams, but the majority of the data
is scattered not very widely; almost all 70 %-quantiles entirely lie below
−25 %, which means that for 85 % of the graphs our update scheme de-
creases the running time by at least 25 %. Moreover, as the median always
lies below 50 %, the performance gain is at least a factor of two for at least
half of the graphs.

Note that even for small values of the density δ the randomly generated
graph get rather dense, as the number of unrelated nodes grows quadrati-
cally in the number of nodes.12 Furthermore, these graphs are quite unnat-
ural: every pair of unrelated nodes may be connected by an adjacency edge
with the same probability. This means that an edge between two siblings is
just as likely as between two nodes for which the nearest common ancestor
is the root.

In order to measure the degree of relationship of two nodes u and v in the
inclusion tree T = (V, E) of a compound digraph D = (V, E, F), Pröpster
(2005) defines the complexity of u and v as the length of the unique path
connecting them in T.13 The complexity of two siblings, for instance, is
2, which is the smallest possible value. The higher the complexity of two
nodes, the lower is their degree of relationship.

Our modified algorithm for randomly generating compound digraphs
builds on the assumption that closely related nodes are more likely to be
connected by an edge.14 The hierarchy tree is built as before with the num-
ber of nodes n and the average number of children γ as parameters. But now
also the average complexity ρ and not only the chosen density influences
the creation of adjacency edges. In a preprocessing step, the maximum num-
ber of pairs of unrelated nodes is calculated for each possible complexity.
Then the total number of needed edges, which is essentially determined by
the density δ and the number of nodes n, is distributed over the range of
possible complexities, using a binomial distribution with mean ρ. For each
possible complexity i, this yields the number of needed edges and dividing
it by the maximum number of possible edges with complexity i gives the
probability pi. The algorithm for creating adjacency edges then checks each

12In fact, n(n− dlogγ ne) = n2 − ndlogγ ne is a lower bound for the number of unrelated
nodes if the hierarchy is created as balanced as described above because a node cannot
have an edge to any of its predecessors, which are at most dlogγ nemany.

13More precisely, the unique path in the underlying undirected counterpart of T, which is
created by ignoring the direction of the edges.

14Basically the same assumption, namely that dense subgraphs form a cluster, is made by
many clustering techniques for partitioning ordinary graphs into a hierarchy of mean-
ingful subgraphs; see Alpert and Kahng (1995) for a detailed overview.

101

3 Visualization

pair of unrelated nodes u and v and inserts an edge with probability pi,
where i is the complexity of u and v.

As the above results already cover dense graphs, this refined method was
used to generate sparse compound digraphs, i. e., the number of adjacency
edges equals the number of nodes. In order to get an impression of the
quality and performance of our update scheme on such supposedly more
natural graphs, we chose two combinations of the average complexity and
the average number of children, (ρ, γ) ∈ {(2.2, 5), (2.3, 15)}, and varied
only the number of nodes n. In this second test, 1, 400 compound digraphs,
100 for each value n ∈ {50, 100, 200, 400, 600, 800, 1000}, were generated.
Figure 3.33, for instance, shows such a randomly generated compound di-
graph with 100 nodes and edges.

The test method was the same as in our first test: the graph is contracted
completely; then all nodes are expanded successively and the drawing is
adjusted with our update scheme after every expand operation. As regards
the area and the number of crossings, the final drawing is compared to a
drawing of the static algorithm applied to the fully expanded graph. The
performance of the updates again is measured as the time for updating
compared to the time for redrawing the respective view with the static
algorithm.

Even for these relatively sparse graphs, our update scheme uses only
approximately 3 % more area on the average. As for the denser graphs in
our first test, the additional area is almost independent of the number of
nodes n; see Figure 3.34. Again, the data is scattered widely (from −25 %
to +30 %), but symmetrically around the median, which is close to 0. This
means that roughly half of the graphs need more area, while the others need
less.

As regards the number of crossings, our update scheme produces on the
average approximately 6 % less crossings than the static algorithm; see Fig-
ure 3.35. This is not as remarkable as the 12 % before, but plausible, as there
is less room for improvements in sparse graphs. For small graphs, the data
is scattered widely and unlike the diagram in Figure 3.27 it happens rela-
tively often that our update scheme leads to more crossings. Nevertheless,
as the number of nodes increases, the scatter reduces remarkably and the
decrease in crossings approaches its former value.

The performance gain is impressive on these sparse graphs. The time for
a single expand operation on the average is approximately 20 % of the time
for redrawing the respective view. The larger the graph, the greater is the
performance gain, as larger parts of the graph can be reused; see Figure 3.36.
This effect is more noticeable than for the denser graphs in our first test; see

102

Figure 3.33: Example of a randomly generated compound digraph with 100 nodes
and about as many edges; average number of children is 5 and the average com-
plexity of the edges is 2.2.

Figure 3.34: Area needed by our update scheme relative to the area of the static
algorithm as affected by the number of nodes n.

Figure 3.35: Number of crossings produced by our update scheme relative to the
number of crossings in the static algorithm as affected by the number of nodes n.

Figure 3.36: Average running time of a single expand operation relative to the time
for re-applying the static algorithm to the respective view as affected by the average
number of nodes n.

3.5 Summary

Figure 3.30. Moreover, as the number of nodes increases, the scatter of the
values decreases significantly: for over 90 % of the graphs with more than
200 nodes, the average expand operation takes significantly less than 20 %
of the time for redrawing the respective view.

3.5 Summary

The proposed update scheme for the algorithm of Sugiyama and Misue
(1991) visualizes the expanding and contracting of nodes in views of com-
pound digraphs. With the particular emphasis laid on the locality of the
updates, it is more efficient than redrawing the entire view. For expanding a
node, the complexity of updating the drawing is determined largely by ap-
plying each of the steps I to III to the modified part of the compound digraph,
followed by step IV for adjusting the coordinates. As our experimental
results in Section 3.4 show, the average time for updating the drawing is
around 50 % of the time for redrawing for dense graphs and below 20 %
for sparse graphs. Moreover, the performance gain is not at the expense of
quality, at least not as regards the area of the drawing, which increases only
insignificantly, and the number of crossings, which is reduced.

The user’s mental map is preserved well: old nodes stay on their layers
in the same relative order and expanded edges take the same course as the
corresponding contracted edge, i. e., properties (MM1)–(MM3) are fulfilled.
Moreover, expanding and contracting are visually inverse as defined by
property (MM0) in Section 1.3.4.

With the help of the novel idea of reusing the positions of dummy nodes
of a contracted edge for the corresponding expanded edges (cf. Section 3.2.3),
a modified version of (Sugiyama and Misue, 1991) supporting constraints
could possibly yield similar results, yet it would have to be applied to the
whole compound digraph and thus would be not as efficient as our update
scheme.

105

4
Architecture

So far we have discussed the two main aspects of visual navigation in
compound (di-)graphs separately: in Chapter 2, an efficient data struc-

ture for expanding and contracting nodes in views has been introduced,
whereas in Chapter 3 a scheme for updating a layered drawing of a view
after these operations has been proposed. Now we shall combine these
aspects into a software architecture for a compound (di-)graph viewer and
editor.

Particular emphasis must be laid on the extensibility with respect to both
the underlying data structure and the drawing style because both are likely
to be researched further and thus will experience variations. Another as-
pect, which is not covered in detail in this work, but fits nicely into this
framework, is animation. This means to smooth the transition from one
drawing to another, e. g., after expanding or contracting a node, by animat-
ing the movement of the (common) nodes. There exist various animation
styles, ranging from simple linear interpolation to modeling the transition
as a composition of translation, rotation, and scaling (Friedrich and Eades,
2002). Therefore, the architecture is kept extensible in this regard as well.

Employing the Observer design pattern (Gamma et al., 1995, pp. 293–303)
allows for arbitrarily many, dynamically attachable views of the same com-
pound (di-)graph. This is convenient in an editor because the user can
have multiple windows showing different views of the same compound
(di-)graph. Extensibility and flexibility is accomplished with the Strategy de-
sign pattern (Gamma et al., 1995, pp. 315–323), which makes it possible to
switch the drawing style and the animation style of each view on the fly.
Also, this pattern accounts for the extensibility as regards the various data
structures for the graph view maintenance problem. Reusability is given

107

4 Architecture

Figure 4.1: Screenshot of the proof-of-concept implementation by Pfeiffer (2005)
and Pröpster (2005).

through coupling the main parts only loosely via the Model-View-Controller
(MVC) design pattern (Buschmann et al., 1996). The model, i. e., the com-
pound (di-)graph and its associated views, for instance, do not have any
knowledge of the GUI used to manipulate them and thus could be reused
unalteredly elsewhere.

The proposed architecture already has demonstrated its feasibility and so-
lidity in a proof-of-concept implementation by Pfeiffer (2005) and Pröpster
(2005), a screenshot of which is shown in Figure 4.1.

4.1 Design Goals

Before discussing the software architecture in detail, we have to explain its
underlying objectives:

(DG 1) Arbitrarily many, dynamically attachable views
A view conceptually represents one perspective of looking at a compound
(di-)graph. Especially for a large graph it is convenient to examine it from
different perspectives simultaneously. Therefore, the number of views of
a single compound (di-)graph must not be restrained. As a consequence,
views must be attachable and removable dynamically.

(DG 2) Interchangeable data structures
The implementation of the compound (di-)graph is where the efficient data
structures for the graph view maintenance problem come into play. Except

108

4.1 Design Goals

for expand and contract, which are performed on the view, the compound
(di-)graph must provide all methods of the fully dynamic graph and hi-
erarchy variant described in Chapter 2. There already exist various data
structures for the graph view maintenance problem and, what is more im-
portant, new ones probably will be researched in the future. Therefore, the
architecture must be flexible and extensible in this respect.

(DG 3) Interchangeable presentation styles
Many drawing styles, including the one presented in Chapter 3, are based
on the paradigm that the inclusion hierarchy is depicted through the geo-
metric inclusion of the corresponding objects in two dimensions. There are,
however, other presentation styles that follow other paradigms, e. g., draw-
ing the inclusion hierarchy as tree with or without the adjacency edges or
three-dimensional drawings. Although these alternative styles are beyond
the scope of this work, it should be possible to integrate them easily into
the proposed architecture.

(DG 4) Dynamically interchangeable drawing styles
For each presentation style, many drawing style are conceivable. The lay-
ered drawing style presented in Chapter 3, for instance, is one among many
possible for the chosen two-dimensional presentation style where the in-
clusion is depicted through geometric inclusion. Also, it is likely that alter-
native drawing styles will be researched in the future. The user must be
allowed to choose a drawing style for each view and to switch it on the fly.
Again, the architecture needs to be flexible and extensible in this respect.

(DG 5) Dynamically interchangeable animation styles
Animating the changes between two drawings, e. g., before and after ex-
panding or contracting, helps the user in better keeping track of the change.
Many different animation styles are conceivable; the user must be able to
choose one for each view and to switch it dynamically. Note that the anima-
tion styles are independent of the drawing styles, i. e., any animation style
can be combined with any drawing style.

(DG 6) Reusability
An interactive editor and viewer with drawing styles and animation is just
one application for the purely combinatorial data structures modeling com-
pound (di-)graphs and their views. Other applications are easily conceiv-
able, e. g., web-based ones using a web-browser as front-end like BioPath
(Brandenburg et al., 2003). Therefore, the purely combinatorial part of our
architecture may not be coupled too tightly with the remainder in order to
maximize reusability.

109

4 Architecture

Model

MVC-View Controller

notification

user action

sta
te

ch
an

ge

Figure 4.2: Schematic overview of the Model-View-Controller paradigm

4.2 High-Level Architecture

Since our goal is an interactive editor and viewer for compound (di-)graphs,
the Model-View-Controller (MVC) paradigm is a good and approved choice
as high-level architecture. The MVC pattern divides the application into
three components: the model encapsulates the abstract data and the core
functionality; views display this data to the user; the controller handles the
user input. In order to avoid the ambiguous use of the term “view” for
the ones of Definition 1.8 on the one hand and for the ones of the MVC
pattern on the other, we call the view of the MVC pattern in the following
MVC-view.

There may be arbitrarily many MVC-views showing the same data in
different ways; therefore, a change-propagation mechanism is provided to
ensure the consistency of the data and its presentation. Figure 4.2 schemati-
cally shows the interplay of the three components: the user interacts with
the model through its representation in a MVC-view; the controller receives
any user actions and changes the state of the model accordingly; the model
then notifies all registered MVC-views via the change-propagation mecha-
nism. See Buschmann et al. (1996, pp. 125–143) for a more detailed descrip-
tion of the MVC paradigm.

Figure 4.3 shows the complete class diagram without methods; detailed
diagrams containing all important methods are provided for model, MVC-
view, and controller separately; see Figures 4.4, 4.5, and 4.6, respectively.
The model part respresents the purely combinatorial layer, e. g., compound
(di-)graphs with various implementations of graph view maintenance data
structures and views. A change-propagation mechanism, realized in the

110

M
od

el

M
V
C
-V
ie
w

C
on

tr
ol
le
r

O
bs

er
v
er

 <
<i

n
te

rf
ac

e>
>

*

ob
se

rv
er

s

1
O
bs

er
v
ab

le
C
om

po
u
n
d
G
ra

ph

V
ie
w

1 ba
se

G
ra

p
h

*

A
n
im

at
io
n
S
ty

le
 <

<a
bs

tr
ac

t>
>

D
ra

w
in

gS
ty

le
 <

<a
bs

tr
ac

t>
>

an
im

at
io

n

p
an

el
1

1

d
ra

w
in

gS
ty

le

1

1

S
u
gi
y
am

a
F
or

ce
D
ir
ec

te
d

V
ie
w
F
ra

m
e

N
on

e
L
in

ea
r

ja
v
ax

.s
w
in

g.
J
In

te
rn

al
F
ra

m
e

A
n
im

at
io
n
T
as

k

ja
v
a.
u
ti
l.
T
im

er
T
as

k

ta
sk

an
im

at
io

n

1

1

ge
om

et
ry

1
1

v
ie

w
1

1

ja
v
ax

.s
w
in

g.
J
F
ra

m
e

G
U
IF

ra
m
e

1
* fr

am
es

N
od

e
E
d
ge

ta
rg

et

1
*

so
u

rc
e

1
*

ad
jE

d
ge

s
*

1

n
od

es*
*

ch
il

d
re

n*
1

{o
rd

er
ed

}

p
ar

en
t

1
*

n
: N

od
e

n
: N

od
e

n
: N

od
e

C
om

po
u
n
d
G
ra

ph

D
y
n
am

ic
L
ea

v
es

n
: N

od
e

ja
v
a.
aw

t.
ge

om
.R

ec
ta

n
gu

la
rS

h
ap

e

sh
ap

e

1
1

e:
 E

d
ge

sh
ap

e

1
1

ja
v
ax

.s
w
in

g.
J
P
an

el

V
ie
w
P
an

el

1

1 p
an

el

G
eo

m
et
ry

O
bs

er
v
er

 <
<i

n
te

rf
ac

e>
>

ob
se

rv
er

s
* 1

P
ol
y
li
n
e

ja
v
a.
aw

t.
ge

om
.P

oi
n
t2

D
p

at
h

P
oi

n
ts

*

1
{o

rd
er

ed
}

co
n

tr
ol

P
oi

n
ts

*

1
{o

rd
er

ed
}

gu
i

1

1

n
ew

1

1

ol
d

1

1

ja
v
a.
aw

t.
ge

om
.G

en
er

al
P
at

h

p
at

h

1
1

G
eo

m
et
ry

B
as

eC
om

po
u
n
d
G
ra

ph

Fi
gu

re
4.
3:

C
om

pl
et
e
cl
as
s
di
ag
ra
m

4 Architecture

form of a Observer pattern, establishes the dynamic one-to-many relation
between a compound (di-)graph and its views. The same mechanism is
used to notify the MVC-views; therefore, the views not only are receiving
notifications about changes of the underlying compound (di-)graph, they
also forward them to their own observers. Note that the model can easily
be reused because it does not know anything about the MVC-views and
controllers; all updates are propagated through the observer interface.

The MVC-view part of the pattern acts as an observer of a view and
adds all geometric information associated with the nodes and edges of a
view, e. g., coordinates and dimensions for nodes and positions of bends
for edges. Note that the application needs to react upon user input, which
usually involves the coordinate where the user clicked; hence, this part also
provides methods for finding the node or edge located at a given coordinate.
Furthermore, the MVC-view part contains the drawing styles and the ani-
mation styles for modifying the geometric information, i. e., for drawing the
view and animating the transitions. Acting as an observer, the MVC-view is
coupled only loosely with its associated view. Also, there can be arbitrarily
many MVC-views for one view, which makes it possible to display the same
view in different presentation styles, e. g., in two- or in three-dimensional
space. Any changes of a view are forwarded to all attached MVC-views,
which are then responsible to reflect the modification appropriately, e. g., to
assign coordinates to a new node or to update the drawing after expanding
a node. They do this with the help of the current drawing style, e. g., the
one described in Chapter 3, and the current animation style.

The controller’s task is to transform user input, e. g., clicking a mouse but-
ton or pressing a key, into appropriate actions in the model, e. g., expanding
a node or inserting a new edge. Not all input triggers changes in the model;
sometimes only the MVC-view is affected, e. g., changing the drawing style
or redrawing the view entirely. The classes of the controller part depend on
the framework used for the graphical user interface, which in our case will
be Java Swing. The most central component in the controller, therefore, is
a JPanel that actually draws the nodes and edges of the view according to
the positions specified in the MVC-view.

4.3 Low-Level Architecture

After this high-level description of the architecture, we take a closer look
at the most important components in each of the three parts of the MVC
pattern. Special emphasis will be laid on how the design goals (DG 1)–

112

4.3 Low-Level Architecture

(DG 5) described in Section 4.1 are achieved. Design goal (DG 6), reusability,
is already achieved through the MVC pattern, which assures that the model
is coupled only loosely with the remainder.

4.3.1 Model

The model essentially consists of classes representing compound (di-)graphs
and their views. A view is coupled only loosely with its associated com-
pound (di-)graph: it acts as observer of the compound (di-)graph. This
ensures design goal (DG 1), i. e., arbitrarily many, dynamically attachable
views per compound (di-)graph. As shown in Figure 4.4, the model com-
prises the following elements.

Node
A node does not store references to its incident edges like, for instance,
the nodes in (GTL). This is important because nodes are shared between
the graph and its views and their incident edges vary in these compound
(di-)graphs. Therefore, the compound (di-)graph is responsible for provid-
ing the mapping between nodes and incident edges.

Edge
An edge consists of references to its source and target node and methods for
accessing them. Deviating deliberately from the definition of a compound
(di-)graph, Edge is used only for adjacency edges; tree edges are not stored
explicitly, but rather as mapping between parent and children and vice
versa.

CompoundGraph
This is the base class of all compound (di-)graphs. It stores the set of nodes
and the mapping between nodes and incident edges. The inclusion hier-
archy is modeled as mapping between parent and children and vice versa.
The reason for this decision is that tree edges are never used explicitly; they
are just traversed to find the parent or the children of a node. Apart from the
methods for accessing the nodes, the incident edges of a node, and its par-
ent and children, this base class also provides basic implementations of all
methods modifying the compound (di-)graph: adding and removing leaves
and adjacency edges as well as splitting and merging of clusters. Since no
additional data structure for the graph view maintenance problem is used
for this class, these methods focus on the absolutely necessary like, for in-
stance, inserting a new leaf into the mapping between parent and children.
More specialized implementations of a compound (di-)graph also have to
do this plus some extra work to update their additional data structures.

113

Observer <<interface>>
+ CREATE: static final int
+ DELETE: static final int
+ EXPAND: static final int
+ CONTRACT: static final int

+ PRE: static final int
+ POST: static final int
+ update(o: Object, action: int, when: int) : void

*

observers

1

ObservableCompoundGraph

+ ObservableCompoundGraph ()

+ attach (Observer) : void
+ detach (Observer) : void
notify (o: Object, action: int, when: int) : void

+ newEdge (source: Node, target: Node) : Edge
+ deleteEdge (Edge) : void
+ newLeaf (parent: Node) : Node
+ deleteLeaf (leaf: Node) : void
+ split (nodes: Collection) : Node
+ merge (innerNode: Node) : void

View

+ View (baseGraph: BaseCompoundGraph,
nodes: Collection)

+ update(o: Object, action: int, when: int) : void
+ getBaseGraph () : BaseCompoundGraph

+ newEdge (source: Node, target: Node) : Edge
+ deleteEdge (Edge) : void
+ newLeaf (parent: Node) : Node
+ deleteLeaf (leaf: Node) : void
+ split (nodes: Collection) : Node
+ merge (innerNode: Node) : void

+ expand (Node) : void
+ contract (Node) : void

1

baseGraph *

Node

Edge

+ Edge (source: Node, target: Node)

+ getSource () : Node
+ getTarget () : Node

target

1

*

source

1

*

adjEdges

*1

nodes

**

children

*1 {ordered}

parent1
*

n: Node

n: Node

n: Node

CompoundGraph

+ CompoundGraph()

+ getParent(child: Node) : Node
+ getChildren (parent: Node) : Collection
+ getAdjEdges (Node) : Collection

+ newEdge (source: Node, target: Node) : Edge
+ deleteEdge (Edge) : void
+ newLeaf (parent: Node) : Node
+ deleteLeaf (leaf: Node) : void
+ split (nodes: Collection) : Node
+ merge (innerNode: Node) : void

DynamicLeaves

+ DynamicLeaves()

+ edgeQuery (u: Node, v: Node): bool
+ edgeExpand (edge: Edge, end: Node) : Collection
+ getInterChildrenEdges (parent: Node) : Collection
+ isAncestorOf (u: Node, v: Node) : bool

+ newEdge (source: Node, target: Node) : Edge
+ deleteEdge (Edge) : void
+ newLeaf (parent: Node) : Node
+ deleteLeaf (leaf: Node) : void
+ split (nodes: Collection) : Node
+ merge (innerNode: Node) : void

BaseCompoundGraph

+ BaseCompoundGraph ()

+ edgeQuery (u: Node, v: Node): bool
+ edgeExpand (edge: Edge, end: Node) : Collection
+ getInterChildrenEdges (parent: Node) : Collection
+ isAncestorOf (u: Node, v: Node) : bool

Figure 4.4: Class diagram of the model

4.3 Low-Level Architecture

ObservableCompoundGraph
Derived from CompoundGraph, this class adds methods to attach, detach,
and notify observers. It maintains a set of all currently attached observers
and overwrites all methods modifying the graph such that all observers are
notified. Every observer is notified twice: before the modification and af-
terwards. Although in most cases an observer will need to handle only one
of these notifications, both are necessary, e. g., for updating the geometric
information associated with nodes and edges when a node is expanded; see
the description of the class View for details.

The method notify is responsible for forwarding a message to all attached
observers. It accepts three parameters: first, the object (Node or Edge) that
is affected; second, a message encoding the type of modification defined
as symbolic constants in Observer; third, the relative time encoded as a
symbolic constant PRE or POST. If, for instance, a new leaf is added, first
the message CREATE with relative time PRE is sent; the affected object is
null because the new leaf has not yet been inserted. Then the corresponding
method in the base class is used to actually add the new leaf which is then
sent to all observers together with a CREATE message and relative time
POST.

BaseCompoundGraph
BaseCompoundGraph defines some auxiliary methods that an attached view
relies on. Determining whether there is a derived edge between two nodes
(edgeQuery) or expanding an edge (edgeExpand) fall into this category.
Note that this class just defines the interface on which an observing view
relies; the concrete implementations go into subclasses like, for instance,
DynamicLeaves which uses the data structure described in Chapter 2.

Observer «interface»
This is the interface that all classes observing a compound (di-)graph have
to implement. Apart from the symbolic constants for encoding the vari-
ous action messages and the relative time, it contains only one method:
update. Whenever the observed graph is modified, update is called with
the appropriate action message, the relative time, and the affected object.
Implementing this method, an observer can react appropriately.

View
A view is both an observer of its associated compound (di-)graph and a com-
pound (di-)graph itself. If our focus was only on the model layer, then this
would be entirely correct. As the link between the model and the MVC-
views, however, the view itself needs to provide some kind of change-
propagation mechanism, i. e., it needs to be observable. Hence, the view

115

4 Architecture

is derived from ObservableCompoundGraph instead of CompoundGraph.
Since a view is just an abstract representation of its associated compound
(di-)graph, it makes no sense to modify it directly through any of the meth-
ods it inherits. Hence, the view redefines all methods modifying it such that
they are forwarded to its associated compound (di-)graph. Additionally, a
view provides methods for expanding and contracting.

The change-propagation mechanism works as follows: whenever the
view receives an update from the compound (di-)graph it observes, it first
checks whether it actually has to adapt its structure. A new leaf inserted
in a subtree rooted at a leaf of the view, for instance, will not be visible in
this view. If the view indeed is affected, it notifies its observers in advance,
makes the appropriate changes, and notifies its observers again.

Expanding and contracting affect only the view. Its observers are in-
formed with EXPAND or CONTRACT messages. Incidentally, both opera-
tions are good examples why notification is needed before and after the
modification. For the moment, it is sufficient to think of an MVC-view ob-
serving a view as an object storing geometric information for every node
and edge. The edges incident to the expanded node are no longer part of
the view after expanding, which makes it impossible to delete their geomet-
ric information afterwards; this has to be done in advance. On the other
hand, the new children and their incident edges are not accessible until the
node is expanded; their geometric information therefore can be set only
afterwards.1

DynamicLeaves
The efficient data structures for the problem of graph view maintenance de-
scribed in Chapter 2 so far have neither been used in CompoundGraph, nor
in ObservableCompoundGraph, nor in BaseCompoundGraph. Apart from
the basic implementations of all methods for the dynamic graph and hier-
archy variant inherited from CompoundGraph, ObservableCompoundGraph
adds just the methods related to the Observer pattern. BaseCompoundGraph
only defines the interface on which an attached view relies to perform ex-
panding and contracting. Any more efficient data structures and imple-
mentations go into subclasses of BaseCompoundGraph, a pattern known
as Strategy (Gamma et al., 1995, pp. 315–323). Since the view only relies
on the interface, the concrete data structures for the graph view mainte-
nance problem are interchangeable as required by (DG 2). In this context,
DynamicLeaves implements our solution described in Chapter 2.

1This problem could also be solved by defining a more advanced notification protocol.
Instead of just sending the affected object, we could also send some action object that
encapsulates all objects that have been deleted or added.

116

4.3 Low-Level Architecture

4.3.2 MVC-View

The MVC-view part contains all classes that are concerned with the geo-
metric layout of a view. Besides the pure geometric information associated
with nodes and edges, this also comprises the different drawing and anima-
tion styles. As shown in Figure 4.5, the MVC-view contains the following
classes:
Geometry
This class encapsulates the geometric information for the nodes and edges
of a view, i. e., a PolyLine for each edge and a RectangularShape for each
node. It is linked to its view through the observer pattern, i. e., Geometry
is an observer of its associated view and thus gets notified about structural
changes to which it reacts by adjusting the geometric information. Note
that Geometry contains all information for drawing a view, but does not
draw it: each Geometry object is linked with a ViewPanel, a JPanel, that
fetches the geometric information from it and actually does the drawing. In
order to increase the reusability and to reduce the coupling, Geometry and
ViewPanel are connected through a second Observer pattern. This makes
it possible to replace the ViewPanel with, for instance, a class generating
images as part of a web-based front-end.

Geometry makes use of an associated DrawingStyle to create a layout of
the view, i. e., to calculate the geometric information and to update it after
every expand and contract operation. It only relies on the interface defined
in DrawingStyle; therefore, the concrete drawing style is dynamically inter-
changeable as required by (DG 4), again a Strategy pattern (Gamma et al.,
1995, pp. 315–323).

Note that the type of geometric information stored already determines
the presentation style. For Geometry we have chosen two-dimensional
polylines for edges and rectangular shapes for nodes. Design goal (DG 3)
is achieved as follows: other presentation styles, e. g., in three dimensions,
need to provide their own geometry classes, drawing styles, animation
styles, and controllers; the model, however, can be reused.

Polyline
PolyLine represents the geometric information of a single edge. An edge
consists of arbitrarily many path points that are connected either with
straight lines or with Bézier curves. In the latter case the control points
are also stored. For directed edges, an arrowhead is constructed sepa-
rately. A PolyLine, therefore, is drawn in two steps: first the curve itself
as GeneralPath, which, incidentally, is cached for efficiency reasons, and
then the arrowhead as Shape.

117

M
odel

C
ontroller

O
bserv

er <<in
terface>>

V
iew

A
n
im

ation
S
ty

le <<abstract>>

+ A
n

im
ation

S
ty

le (p
an

el: J
P

an
el)

+ start(old
: G

eom
etry, n

ew
: G

eom
etry

) : v
oid

+ isR
u

n
n

in
g() : boolean

+ can
cel() : v

oid
+ n

ex
tF

ram
e() : v

oid

D
raw

in
gS

ty
le <<abstract>>

+ d
raw

 (g: G
eom

etry
) : v

oid
+ ex

p
an

d
 (u

: N
od

e, g: G
eom

etry
) : v

oid
+ con

tract (u
: N

od
e, g: G

eom
etry

) : v
oid

d
raw

in
gS

ty
le

1

1

S
u
giy

am
a

+ d
raw

 (g: G
eom

etry
) : v

oid
+ ex

p
an

d
 (u

: N
od

e, g: G
eom

etry
) : v

oid
+ con

tract (u
: N

od
e, g: G

eom
etry

) : v
oid

F
orceD

irected

+ d
raw

 (g: G
eom

etry
) : v

oid
+ ex

p
an

d
 (u

: N
od

e, g: G
eom

etry
) : v

oid
+ con

tract (u
: N

od
e, g: G

eom
etry

) : v
oid

N
on

e

+ n
ex

tF
ram

e() : v
oid

L
in

ear

+ n
ex

tF
ram

e() : v
oid

A
n
im

ation
T
ask

+ A
n

im
ation

T
ask

(a: A
n

im
ation

S
ty

le)
+ ru

n
 () : v

oid

jav
a.u

til.T
im

erT
ask

task
an

im

1
1

v
iew

1
1

n
: N

od
e

jav
a.aw

t.geom
.R

ectan
gu

larS
h
ape

sh
ap

e

1
1

e: E
d

ge
sh

ap
e

1
1

G
eom

etry
O
bserv

er <<in
terface>>

+ u
p

d
ate (old

: G
eom

etry
) : v

oid
observ

ers

*

1

P
oly

lin
e

+ S
T

R
A

IG
H

T
 : static fi

n
al in

t
+ S

M
O

O
T

H
: static fi

n
al in

t
+ setS

ty
le (s: in

t) : v
oid

+ getP
ath

(): G
en

eralP
ath

+ getA
rrow

h
ead

() : S
h

ap
e

+ getP
ath

P
oin

ts () : L
ist

+ getC
on

trolP
oin

ts () : L
ist

jav
a.aw

t.geom
.P

oin
t2

D

n
ew

11

old
11

jav
a.aw

t.geom
.G

en
eralP

ath

p
ath

1
1

G
eom

etry

+ G
eom

etry
 (v

iew
: V

iew
)

+ u
p

d
ate(o: O

bject, action
: in

t, w
h

en
: in

t) : v
oid

+ getV
iew

() : V
iew

+ attach
 (observ

er: G
eom

etry
O

bserv
er) : v

oid
+ d

etach
 (observ

er: G
eom

etry
O

bserv
er) : v

oid
#

 n
otify

 (old
: G

eom
etry

) : v
oid

+ red
raw

 () : v
oid

+ getN
od

eS
h

ap
e (n

: N
od

e) : R
ectan

gu
larS

h
ap

e
+ getE

d
geS

h
ap

e (e: E
d

ge) : P
oly

lin
e

+ getN
od

eA
tP

oin
t (p

: P
oin

t) : N
od

e
+ getE

d
geA

tP
oin

t (p
: P

oin
t) : E

d
ge

+ setD
raw

in
gS

ty
le(d

s: D
raw

in
gS

ty
le) : v

oid

p
ath

P
oin

ts
*

1
{ord

ered
}

con
trolP

oin
ts

*

1
{ord

ered
}

an
im

ation

p
an

el
1

1

V
iew

P
an

el

geom
etry

1
1

Figure
4.5:C

lass
diagram

ofthe
M
V
C
-view

4.3 Low-Level Architecture

GeometryObserver «interface»
If a class needs to keep track of an associated Geometry object, it has to
implement this interface. Whenever the geometric information changes all
observers are notified. In order to support animation this notification also
includes a copy of the old Geometry object, i. e., the geometric information
before the change.

DrawingStyle «abstract»
A DrawingStyle defines the abstract interface of layout algorithms on which
Geometry relies. The concrete implementations such as the one described in
Chapter 3 are subclasses of it. Geometry contains a reference to its current
drawing style. This Strategy pattern ensures (DG 4), i. e., switching the
different drawing styles on the fly.

Apart from a method for simply drawing a view, a DrawingStyle also
contains methods for updating an existing drawing after expanding or con-
tracting a node. To this end, the DrawingStyle may need to store some
auxiliary structures of the previous drawing. Although it is beyond the
scope of this work, it seems to be natural to stretch the DrawingStyle’s field
of activity a bit further as regards, for instance, updating the drawing after
inserting and deleting leafs.

AnimationStyle «abstract»
Animation consists of two parts: the animation style and a timer that pe-
riodically triggers the generation of new drawings, so-called frames. The
abstract class AnimationStyle defines the interface on which the ViewPanel
relies. The ViewPanel stores a reference to the animation style the user has
chosen. Again, this Strategy pattern allows us to switch the animation style
dynamically as required by (DG 5).

Whenever the ViewPanel is notified that its observed Geometry object
has changed, it also receives the old Geometry object. Both the old and the
new Geometry are then passed on to the current animation style, which
gradually adjusts the old drawing until it finally equals the new. For this
purpose, the animation style provides a method nextFrame, which does a
single step and then triggers a repaint of the ViewPanel to actually show
the step to the user.

AnimationTask
This TimerTask is managed by the AnimationStyle. Its only purpose is to
periodically call the nextFrame method of its AnimationStyle.

ViewPanel
The ViewPanel conceptually lies on the borderline between MVC-view
and controller. On the one hand, it is responsible for actually drawing a

119

4 Architecture

Geometry object; on the other hand, it handles user inputs like, for instance,
highlighting the node a user selects with a mouse click or moving a node
by dragging the mouse.

A ViewPanel acts as a GeometryObserver, i. e., it holds a reference to the
Geometry object it shows and is informed whenever this object changes.
Since the old Geometry is sent along with this notification, the ViewPanel
can start the animation by passing both the old and the new Geometry to
its AnimationStyle. While the animation is running the ViewPanel does not
draw its associated, i. e., the new, Geometry object as usual, but rather the
old one, which the AnimationStyle adjusts step by step until it finally is
equal to the new one.

Any interaction with nodes or edges is handled in the ViewPanel, which
features multiple modes, e. g., one for editing, one for selecting, and one
for visual navigation through expanding and contracting. Depending on
the action a user requests, the ViewPanel adjusts only the drawing, e. g., for
highlighting a selected node, or it changes the Geometry, e. g., for moving
a node, or it even modifies the structure of the view or the base graph, e. g.,
for expanding a node or for adding a leaf.

4.3.3 Controller

The controller comprises all classes handling user events. The graphical user
interface of our application will consist of a single window with menu and
toolbars, the GUIFrame. Within this window the user can open arbitrarily
many internal windows, which are instances of the class ViewFrame, each
of which contains a ViewPanel showing the drawing of a view.

GUIFrame
The GUIFrame reacts on user inputs like pressing a button in a toolbar or
selecting an entry in a menu. Essentially, the GUIFrame is responsible for
all inputs that are not already handled by a ViewPanel. This includes, for
instance, loading and saving of compound (di-)graphs, switching editing
modes, managing internal windows, or presenting a dialog for modifying
the preferences. In most cases, these actions have some influence on the
views shown in the internal windows. If the user, for instance, switches the
mode the GUIFrame forwards this request to every ViewFrame which in
turn sets the mode in its ViewPanel. Conversely, the ViewPanel can affect
the GUIFrame, which is used for, e. g., enabling or disabling buttons and
menu entries depending on the selected objects.

120

M
V
C
-V
ie
w

A
n

im
at

io
n

S
ty

le
 <

<a
bs

tr
ac

t>
>

an
im

at
io

n

p
an

el
1

1
V

ie
w

F
ra

m
e

ja
v

ax
.s

w
in

g.
J

In
te

rn
al

F
ra

m
e

ge
om

et
ry

1
1

ja
v

ax
.s

w
in

g.
J

F
ra

m
e

G
U

IF
ra

m
e

1

* fr
am

es

ja
v

ax
.s

w
in

g.
J

P
an

el

V
ie

w
P

an
el

- m
od

e:
 in

t
+

u
p

d
at

e
(o

ld
: G

eo
m

et
ry

)
: v

oi
d

+
p

ai
n

t
(g

: G
ra

p
h

ic
s)

 :
v

oi
d

1

1 p
an

el

G
eo

m
et

ry
O

bs
er

v
er

 <
<i

n
te

rf
ac

e>
>

ob
se

rv
er

s
* 1

gu
i1

1

n
ew

1 1

ol
d

1 1

G
eo

m
et

ry

ja
v

a.
aw

t.
ev

en
t.

M
ou

se
L

is
te

n
er

<<

in
te

rf
ac

e>
>

ja
v

a.
aw

t.
ev

en
t.

M
ou

se
M

ot
io

n
L

is
te

n
er

<<

in
te

rf
ac

e>
>

ja
v

ax
.s

w
in

g.
ev

en
t.

C
h

an
ge

L
is

te
n

er

<<
in

te
rf

ac
e>

>

ja
v

ax
.a

w
t.

ev
en

t.
A

ct
io

n
L

is
te

n
er

<<
in

te
rf

ac
e>

>

Fi
gu

re
4.
6:

C
la
ss

di
ag
ra
m

of
th
e
co

nt
ro
lle

r

4 Architecture

Figure 4.7: Screenshots of our proof-of-concept implementation (Pfeiffer, 2005;
Pröpster, 2005) before (left) and after (expanding) the node in the middle.

ViewFrame
The class ViewFrame is used just as container for the ViewPanel. It receives
requests from the GUIFrame and translates them to one or more requests
for its ViewPanel.

4.4 Use Cases

So far the proposed architecture has been described only statically. For a
deeper understanding, the dynamic interplay of the components needs to
be investigated. This will be done by means of sequence diagrams for two
significant use cases: expanding a node and adding a new leaf.

4.4.1 Expansion

Figure 4.8 depicts the sequence diagram for expanding a node, which looks
in our proof-of-concept implementation (Pfeiffer, 2005; Pröpster, 2005) as
shown on the screenshots in Figure 4.7. It starts within panel, an instance of
the class ViewPanel, in a method handling the user input that triggers the
expanding, e. g., mouseClicked. It is assumed that the position where the
user clicked is passed to this method as a parameter p of type Point.

First, the panel asks its associated Geometry object which node is drawn
at p with getNodeAtPoint(p). If there is indeed a node v at these coordinates,
which we have assumed in Figure 4.8, the panel fetches the associated View

122

ge
tV

ie
w

()

v
ie

w
: V

ie
w

ex
p

an
d

(v
)

ge
tN

od
eA

tP
oi

n
t(

p
)

v
: N

od
e

ge
om

et
ry

:
G
eo

m
et
ry

v
ie
w
:

V
ie
w

pa
n
el
:

V
ie
w
P
an

el

in
se

rt
 c

hi
ld

re
n

of
 v

an

d
up

da
te

 th
e

de
ri

ve
d

ed
ge

s;
 s

ee

A
lg

or
ith

m
 2

.2 n
ot

if
y

(v
, E

X
P

A
N

D
, P

O
S

T
)

ol
d
:

G
eo

m
et
ry

d
ra

w
in

gS
ty

le
:

D
ra

w
in

gS
ty

le

u
p

d
at

e(
v

, E
X

P
A

N
D

, P
O

S
T

)

n
ew

(t
h

is
)

ex
p

an
d

(v
, t

h
is

)

n
ot

if
y

(o
ld

)

u
p

d
at

e(
ol

d
)

an
im

at
io
n
S
ty

le
:

A
n
im

at
io
n
S
ty

le

st
ar

t(
ol

d
, g

eo
m

et
ry

)

ti
m
er

:
ja
v
a.
u
ti
l.
T
im

er
n

ew
()

ta
sk

:
A
n
im

at
io
n
T
as

k

n
ew

(t
h

is
)

sc
h

ed
u

le
(t

as
k

)

n
ot

if
y

(v
, E

X
P

A
N

D
, P

R
E

)

u
p

d
at

e(
v

, E
X

P
A

N
D

, P
R

E
)

Fi
gu

re
4.
8:

Se
qu

en
ce

di
ag
ra
m

fo
r
ex
pa

nd
in
g
a
no

de

4 Architecture

task:
AnimationTask

timer:
java.util.Timer

run()

animationStyle:
AnimationStyle

nextFrame()

calculate next step of
the animation and

update old
accordingly

panel:
ViewPanel

repaint()

Figure 4.9: Sequence diagram showing one step of the animation

object and calls expand(v). Before actually expanding the node, all attached
observers are notified in advance by sending them the affected node v, the
message EXPAND, and the relative time PRE. Note that only one of these
observers, namely the Geometry object associated with panel, is shown in
Figure 4.8; it uses this notification to delete the geometric information of
edges incident to v, as they will be replaced with their corresponding ex-
panded edges. Expanding v, i. e., inserting the new children and adjusting
the derived edges, works as shown in Algorithm 2.2 and thus is abbreviated
in Figure 4.8. After the purely combinatorial part of expanding is done, all
observers of view are notified again, i. e., their method update is called with
v, the message EXPAND, and the relative time POST as parameters.

The geometry object reacts on this update request by adding new geo-
metric information for all new nodes and edges: for the nodes it chooses
some default position; the edges are chosen as straight lines. Then it instan-
tiates a new Geometry object old as copy of itself. Adjusting the geomet-
ric information after expanding is done by passing v and geometry to the
method expand of the DrawingStyle associated with geometry; afterwards
geometry represents the new drawing. Then all observers of geometry are
notified that it has been modified, i. e., their method update is called with
old as parameter. Usually there is only one observer, namely panel, which
is why only this call is shown in Figure 4.8. Whenever the panel’s update
method is called, it starts the animation by passing the old and the new
Geometry object, i. e., old and geometry, to the start method of the associ-
ated AnimationStyle. The animation is done by instantiating a new Timer
and scheduling a new AnimationTask to be executed periodically. Since
timer runs the scheduled task in its own thread, expanding ends here.

Figure 4.9 shows one step of the animation: each time the timer invokes

124

4.4 Use Cases

the task’s run method, it performs the next step by calling the nextFrame
method of the associated animationStyle. The current state of the anima-
tion is always stored in old; nextFrame adjusts old and then triggers a paint
request on the panel to actually show this step. Note, that during the ani-
mation the panel therefore has to draw old instead of geometry.

4.4.2 Adding a Leaf

Like expanding, adding a new leaf starts in a method of panel handling
the user input that triggers this action, e. g., mouseClicked2; see Figure 4.10.
The parent of the new leaf is determined with getNodeAtPoint(p), where p
is the position of the mouse-click. If there is some node pa drawn at posi-
tion p, which is assumed in Figure 4.10, the new leaf is created by calling
newLeaf(pa) on view. As already mentioned in the description of the class
View, it makes no sense to modify the view directly; therefore, the newLeaf
request is forwarded to its baseGraph. Before the new leaf actually is cre-
ated and inserted all observers of baseGraph are notified of the upcoming
modification. In Figure 4.10 view is the only observer; it completely ignores
this notification.

After the new leaf l is created, it is sent to all observers together with a
message CREATE and the relative time POST. Now, the view can decide
whether the new node l actually is visible. This is the case here if pa is no
leaf in view3, which we have assumed in Figure 4.10. Next all observers of
view are informed in advance about the new node; in our example this is
only geometry, which ignores this notification. After having added l to the
view, it is sent to all observers with the message CREATE and the relative
time POST. Now, geometry creates a new RectangularShape and associates
it with l. Since no animation is needed, no copy of geometry is created;
the observers consequently receive a null value as the old geometry in the
following notification.

Whenever the panel receives an update request with a null value, it skips
the animation and simply schedules itself for repainting. In our example,
however, the panel itself triggered this modification; therefore, it ignores
this update. Then the new leaf l is returned to the panel via view. It still

2Note that a ViewPanel features multiple modes in order to bind the same user action to
different actions in the model, e. g., one for adding nodes and edges and another for
expanding and contracting; the user can switch the mode dynamically.

3Adding a new leaf with a leaf of view as parent is also possible, yet the new leaf will
be hidden, which leads to a somewhat inconsistent user experience. The panel, how-
ever, can easily check on this condition and expand the parent just before triggering the
repaint.

125

getV
iew

()

v
iew

: V
iew

n
ew

L
eaf(p

a)

getN
od

eA
tP

oin
t(p

)

p
a: N

od
e

geom
etry

:
G
eom

etry
v
iew

:
V
iew

pan
el:

V
iew

P
an

el

n
otify

(l, C
R

E
A

T
E

, P
O

S
T

)

n
otify

(n
u

ll)

u
p

d
ate(n

u
ll)

baseG
raph

:
O
bserv

ableC
om

pou
n
d
G
raph

n
ew

L
eaf(p

a)

l: N
od

e

set default shape and
default position

(relative to p
a) for l

l: N
od

e

getN
od

eS
h

ap
e(l)

s: R
ectan

gu
larS

h
ap

e

s:
R
ectan

gu
larS

h
ape

setF
ram

e(p
.getX

(), p
.getY

(), s.getW
id

th
(), s.getH

eigh
t)

rep
ain

t()

n
otify

(n
u

ll, C
R

E
A

T
E

, P
R

E
)

u
p

d
ate(n

u
ll, C

R
E

A
T

E
, P

R
E

)

n
otify

(n
u

ll, C
R

E
A

T
E

, P
R

E
)

l:
N
od

e
n

ew
()

u
p

d
ate(l, C

R
E

A
T

E
, P

O
S

T
)

n
otify

(l, C
R

E
A

T
E

, P
O

S
T

)

u
p

d
ate(l, C

R
E

A
T

E
, P

O
S

T
)

<<create>>

u
p

d
ate(n

u
ll, C

R
E

A
T

E
, P

R
E

)

Figure
4.10:Sequence

diagram
for

adding
a
new

leaf.

4.5 Summary

has its default position, which the panel fetches with getNodeShape and
subsequently moves it to the position where the user clicked. Finally, the
panel triggers a repaint, which actually displays the new drawing to the
user.

4.5 Summary

The proposed software architecture for a compound (di-)graph viewer and
editor is flexible and extensible as regards drawing styles, animation styles,
and data structures for the problem of graph view maintenance. Its parts are
coupled only loosely in order to maximize reusability. All of this is achieved
through employing well approved design patterns, such as Observer, Strat-
egy, or Model-View-Controller. An implementation based on this architecture
(Pfeiffer, 2005) shows not only its suitability and solidity, but also provides
a framework for demonstrating the drawing style of Chapter 3, which has
been implemented as part of (Pröpster, 2005).

127

5
Conclusion

Efficient visual navigation of hierarchically structured graphs has several
interesting aspects that have been researched in this work. On the one

hand, a suitable data structure for the problem of graph view maintenance
is required; on the other, the expanding and contracting must be visual-
ized appropriately. Finally, both need to be combined into an extensible
and flexible software architecture that demonstrates the feasibility of the
approach.

5.1 Results

The problem of graph view maintenance first was generalized from clus-
tered graphs to compound (di-)graphs, which can have adjacency edges be-
tween internal nodes and not only between leaves of the inclusion tree. This
is especially important for the newly introduced dynamic leaves variant of
graph view maintenance, which supports adding and removing leaves in
the inclusion tree. So far efficient data structures had been known only
for the static and the dynamic graph variant. Both variants, however, do
not allow modifications of the node set and thus the corresponding data
structures are of limited value for an interactive editor.

We therefore generalized the data structure of Buchsbaum et al. (2000) to
the new dynamic leaves variant with a novel technique of superimposing
a search tree over an ordered list maintenance structure. The extra cost for
this dynamization is roughly a factor of O(log n/log log n), which seems to be
acceptable given that this is the first data structure for the problem of graph
view maintenance with a dynamic set of nodes.

129

5 Conclusion

Visualizing the expanding and contracting is something that occurs natu-
rally in this context, yet it had not been researched until the last years. We
proposed an update scheme for the static drawing algorithm for compound
digraphs of Sugiyama and Misue (1991). This algorithm produces layered
drawings that have many applications ranging from biochemical pathways
to UML diagrams. As our experimental results showed, modifying the
intermediate results of the static algorithm only locally makes the update
scheme clearly more efficient than re-applying the algorithm after expand-
ing or contracting. Moreover, the performance gain is not at the expense
of drawing quality as regards the area and the number of crossings. At the
same time, our update scheme preserves the user’s mental map well: nodes
that are are not affected stay on the same level in the same relative order and
expanded edges take the same course as the contracted edge from which
they emerged; furthermore, expanding and contracting are visually inverse.

Finally, the data structure and the update scheme for visualizing the
expanding and contracting were integrated into an interactive editor and
viewer for compound (di-)graphs. The proposed software architecture had
been chosen with special emphasis laid on extensibility and reusability:
both the data structure and the drawing algorithm are easily exchangeable
and the purely combinatorial part, i. e., the compound (di-)graph and its
views, is reusable without the editor front-end. Although it is beyond the
scope of this work, provision is made for animation, which makes it even
easier for the user to follow the transition from one drawing to the next. A
proof-of-concept implementation based on the proposed architecture (Pfeif-
fer, 2005; Pröpster, 2005) shows its feasibility and suitability and provides a
framework for demonstrating the proposed update scheme in combination
with our data structure.

5.2 Open Problems and Future Work

As already mentioned in Chapter 2, our data structure for the dynamic
leaves variant of graph view maintenance partly solves an open problem
of Buchsbaum and Westbrook (2000). An efficient data structure for the
most dynamic variant, i. e., with splitting and merging of clusters, remains
an open problem. Note that both operations are actually straightforward:
splitting just creates a new internal node between some node p and a subset
of p’s children; merging is its inverse. The problems arise only if redundant
information like the sets S(·) need to be updated. On the other hand, this
information is essential for edgeQuery and edgeExpand. The real challenge

130

5.2 Open Problems and Future Work

therefore is to find the right amount of redundant information that on the
one hand is enough for the queries and on the other does not complicate
splitting and merging too much. To this end, the sets S(·) are not practical,
especially not for splitting, where the new node would need to be equipped
with such a set, which can have a size of O(n).

Visualizing the expanding and contracting as discussed in Chapter 3 has
been researched only recently: apart from our update scheme for the layered
drawing algorithm of Sugiyama and Misue (1991), so far only force-directed
methods have been proposed (Huang and Eades, 1998; Dwyer and Ecker-
sley, 2003). We have chosen the algorithm of Sugiyama and Misue (1991)
as basis because its local layering naturally supports expanding. Another
algorithm for layered drawings of compound digraphs, however, is the one
of Sander (1999), which uses a global layering. Considering that it gener-
ally produces more compact and more pleasant drawings than the one of
Sugiyama and Misue (1991), it appears to be worthwhile to research a sim-
ilar update scheme for this algorithm. Although the update of the global
layering is more complicated, such an update scheme should be achievable
in principle (Sander, 2004).

The update scheme deliberatly has been restricted to the two operations
expanding and contracting, as the focus of this work lies on visual naviga-
tion. In the fully dynamic graph and hierarchy variant, which is what the
user expects in an editor, there are, however, more operations that require
updating the drawing appropriately, e. g., inserting a new leaf or splitting
and merging. For ordinary graphs similar problems have been researched
in the field of dynamic graph drawing (Branke, 2001), but for hierarchically
structured graphs only few results are known.

The software architecture introduced in Chapter 4 has been chosen delib-
erately as regards extensibility and flexibility of data structures, drawing
styles, and animation styles. Although the proof-of-concept implementa-
tion based on this architecture (Pfeiffer, 2005; Pröpster, 2005) is suitable for
demonstrating the update scheme and the feasibility of the approach, it still
lacks many features of a full-fledged editor for compound (di-)graphs.

131

Bibliography

J. Abello and J. Korn. MGV: A system for visualizing massive multigraphs.
IEEE Transactions on Visualization and Computer Graphics, 8(1):21–38, 2002.

J. Abello, S. G. Kobourov, and R. Yusufov. Visualizing large graphs with
compound-fisheye views and treemaps. In Pach (2004), pages 431–441.

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algorithms.
Addison Wesley, 1983.

C. J. Alpert and A. B. Kahng. Recent directions in netlist partitioning: a
survey. Integration, the VLSI Journal, 19(1):1–81, 1995.

S. Alstrup. Personal communication, 2003.

S. Alstrup and J. Holm. Improved algorithms for finding level ancestors in
dynamic trees. In U. Montanari, J. D. P. Rolim, and E. Welzl, editors, Au-
tomata, Languages and Programming, 27th International Colloquium, ICALP
2000, Geneva, Switzerland, July 9–15, 2000, Proceedings, volume 1853 of
Lecture Notes in Computer Science, pages 73–84. Springer, 2000.

O. Bastert and C. Matuszewski. Layered drawings of digraphs. In Kauf-
mann and Wagner (2001), chapter 5, pages 87–120.

G. D. Battista, editor. Graph Drawing, 5th International Symposium, GD ’97,
Rome, Italy, September 18–20, 1997, Proceedings, volume 1353 of Lecture
Notes in Computer Science, 1997. Springer.

M. A. Bender and M. Farach-Colton. The level ancestor problem simplified.
In S. Rajsbaum, editor, LATIN 2002: Theoretical Informatics, 5th Latin Amer-
ican Symposium, Cancun, Mexico, April 3–6, 2002, Proceedings, volume 2286
of Lecture Notes in Computer Science, pages 508–515. Springer, 2002.

M. A. Bender, C. Richard, E. D. Demaine, M. Farach-Colton, and J. Zito. Two
simplified algorithms for maintaining order in a list. In R. H. Möhring
and R. Raman, editors, Algorithms – ESA 2002, 10th Annual European Sym-
posium, Rome, Italy, September 17–21, 2002, Proceedings, volume 2461 of
Lecture Notes in Computer Science, pages 152–164. Springer, 2002.

133

Bibliography

O. Berkman and U. Vishkin. Finding level ancestors in trees. Journal of
Computer and System Sciences, 48(2):214–230, 1994.

F. Bertault and M. Miller. An algorithm for drawing compound graphs. In
Kratochvíl (1999), pages 197–204.

K.-F. Böhringer and F. N. Paulisch. Using constraints to achieve stability in
automatic graph layout algorithms. In Proc. ACM Conference on Human
Factors in Computing Systems (CHI), pages 43–51, New York, NY, USA,
1990. ACM Press.

Boost Graph Library. http://www.boost.org/libs/graph/doc/.

F. J. Brandenburg. Layout graph grammars: The placement approach. In
Graph-Grammars and Their Application to Computer Science, 4th International
Workshop, Bremen, Germany, March 5–9, 1990, Proceedings, volume 532 of
Lecture Notes in Computer Science, pages 144–156. Springer, 1990.

F. J. Brandenburg. Designing graph drawings by layout graph grammars.
In Tamassia and Tollis (1995), pages 416–427.

F.-J. Brandenburg, editor. Graph Drawing, Symposium on Graph Drawing, GD
’95, Passau, Germany, September 20–22, 1995, Proceedings, volume 1027 of
Lecture Notes in Computer Science, 1996. Springer.

F. J. Brandenburg, M. Forster, A. Pick, M. Raitner, and F. Schreiber. Biopath –
exploration and visualization of biochemical pathways. In Jünger and
Mutzel (2004), pages 215–236.

U. Brandes. Drawing on physical analogies. In Kaufmann and Wagner
(2001), chapter 4, pages 71–86.

U. Brandes and B. Köpf. Fast and simple horizontal coordinate assignment.
In Mutzel et al. (2002), pages 31–44.

J. Branke. Dynamic graph drawing. In Kaufmann and Wagner (2001),
chapter 9, pages 228–246.

S. Bridgeman and R. Tamassia. Difference metrics for interactive orthogonal
graph drawing algorithms. In Whitesides (1998), pages 57–71.

R. Brockenauer and S. Cornelsen. Drawing clusters and hierarchies. In
Kaufmann and Wagner (2001), chapter 8, pages 193–227.

A. L. Buchsbaum. Personal communication, 2003.

134

http://www.boost.org/libs/graph/doc/

Bibliography

A. L. Buchsbaum and J. R. Westbrook. Maintaining hierarchical graph views.
In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, January 9–11, 2000, San Francisco, CA, USA, pages 566–575, 2000.

A. L. Buchsbaum, M. T. Goodrich, and J. R. Westbrook. Range searching
over tree cross products. In M. Paterson, editor, Algorithms – ESA 2000, 8th
Annual European Symposium, Saarbrücken, Germany, September 5–8, 2000,
Proceedings, volume 1879 of Lecture Notes in Computer Science, pages 120–
131. Springer, 2000.

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern
Oriented Software Architecture: A System of Patterns. John Wiley & Sons,
1996.

R. Castelló, R. Mili, and I. G. Tollis. An algorithmic framework for visualiz-
ing statecharts. In Marks (2001), pages 139–149.

R. Castelló, R. Mili, and I. G. Tollis. A framework for the static and interac-
tive visualization of statecharts. Journal of Graph Algorithms and Applica-
tions, 6(3):313–351, 2002.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2nd edition, 2001.

G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing: Algo-
rithms for the Visualization of Graphs. Prentice Hall, 1998.

P. F. Dietz. Maintaining order in a linked list. In Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, San Francisco, CA, May
5–7, 1982, pages 122–127, 1982.

P. F. Dietz. Finding level ancestors in dynamic trees. In F. K. H. A. Dehne,
J.-R. Sack, and N. Santoro, editors, Algorithms and Data Structures, 2nd
Workshop WADS ’91, Ottawa, Canada, August 14–16, 1991, Proceedings, vol-
ume 519 of Lecture Notes in Computer Science, pages 32–40. Springer, 1991.

P. F. Dietz and D. D. Sleator. Two algorithms for maintaining order in a list.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,
New York, NY, May 25–27, 1987, pages 365–372, 1987.

M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohn-
ert, and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds.
SIAM Journal on Computing, 23(4):738–761, 1994.

135

Bibliography

T. Dwyer and P. Eckersley. Wilmascope – a 3d graph visualization system.
In Jünger and Mutzel (2004), pages 55–75.

P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–
160, 1984.

P. Eades and Q.-W. Feng. Multilevel visualization of clustered graphs. In
North (1997), pages 101–112.

P. Eades and Q.-W. Feng. Drawing clustered graphs on an orthogonal grid.
In Battista (1997), pages 146–157.

P. Eades and M. L. Huang. Navigating clustered graphs using force-directed
methods. Journal of Graph Algorithms and Applications, 4(3):157–181, 2000.

P. Eades and S. H. Whitesides. Drawing graphs in two layers. Theoretical
Computer Science, 131:361–374, 1994.

P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs.
Algorithmica, 11(1):379–403, 1994.

P. Eades, Q.-W. Feng, and X. Lin. Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. In North (1997), pages 113–128.

P. Eades, X. Lin, and R. Tamassia. An algorithm for drawing a hierarchical
graph. International Journal of Computational Geometry and Applications, 6
(2):145–156, 1996b.

P. Eades, Q.-W. Feng, and H. Nagamochi. Drawing clustered graphs on an
orthogonal grid. Journal of Graph Algorithms and Applications, 3(4):3–29,
1999.

M. Eiglsperger, S. P. Fekete, and G. W. Klau. Orthogonal graph drawing. In
Kaufmann and Wagner (2001), chapter 6, pages 121–171.

J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz – open source graph drawing tools. In Mutzel et al. (2002),
pages 483–484.

Q.-W. Feng, R. F. Cohen, and P. Eades. How to draw a planar clustered
graph. In D.-Z. Du and M. Li, editors, Computing and Combinatorics, First
Annual International Conference, COCOON ’95, Xi’an, China, August 24–26,
1995, Proceedings, volume 959 of Lecture Notes in Computer Science, pages
21–30. Springer, 1995.

136

Bibliography

R. Fleischer and C. Hirsch. Graph drawing and its applications. In Kauf-
mann and Wagner (2001), chapter 1, pages 1–22.

A. Formella and J. Keller. Generalized fisheye views of graphs. In Branden-
burg (1996), pages 242–253.

M. Forster. Crossings in Clustered Level Graphs. PhD thesis, Fakultät für
Mathemetik und Informatik, Universität Passau, 2004.

C. Friedrich and P. Eades. Graph drawing in motion. Journal of Graph
Algorithms and Applications, 6(3):353–370, 2002.

G. W. Furnas. Generalized fisheye views. In Proc. ACM Conference on Human
Factors in Computing Systems (CHI), pages 16–23, 1986.

H. N. Gabow. Data structures for weighted matching and nearest common
ancestors with linking. In Proceedings of the First Annual ACM-SIAM Sym-
posium on Discrete Algorithms, January 22–24, 1990, San Francisco, California,
pages 434–443, 1990.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments od Reusable Object-Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

M. T. Goodrich and R. Tamassia. Data Structures and Algorithms in Java. John
Wiley & Sons, 3rd edition, 2003.

GTL. http://www.infosun.fmi.uni-passau.de/GTL.

C. Gutwenger, M. Jünger, G. W. Klau, S. Leipert, P. Mutzel, and
R. Weiskircher. AGD: A library of algorithms for graph drawing. In
Mutzel et al. (2002), pages 473–474.

D. Harel. Statecharts: A visual formulation for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

D. Harel. On visual formalisms. Communications of the ACM (CACM), 31(5):
514–530, 1988.

D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13(2):338–355, 1984.

137

http://www.infosun.fmi.uni-passau.de/GTL

Bibliography

D. Hepting. The history of a picture’s worth, 1999. http://www2.cs.uregina.
ca/~hepting/research/web/words/index.html.

T. Hickl. Rechtwinkliges Layout von hierarchisch strukturierten Graphen. PhD
thesis, Fakultät für Mathemetik und Informatik, Universität Passau, 1994.

M. L. Huang and P. Eades. A fully animated interactive system for clustering
and navigating huge graphs. In Whitesides (1998), pages 374–383.

M. L. Huang, P. Eades, and J. Wang. On-line animated visualization of huge
graphs using a modified spring algorithm. Journal of Visual Languages and
Computing, 9(6):623–645, 1998.

M. Jünger and P. Mutzel, editors. Graph Drawing Software. Mathematics and
Visualization. Springer, 2004.

T. Kamada and S. Kawai. A simple method for computing general positions
in displaying three-dimensional objects. Computer Vision, Graphics and
Image Processing, 41:43–56, 1988.

M. Kaufmann and D. Wagner, editors. Drawing Graphs—Methods and Models,
volume 2025 of Lecture Notes in Computer Science. Springer, 2001.

S. G. Kobourov and M. T. Goodrich, editors. Graph Drawing, 10th Interna-
tional Symposium, GD 2002, Irvine, CA, USA, August 26–28, 2002, Revised
Papers, volume 2528 of Lecture Notes in Computer Science, 2002. Springer.

J. Kratochvíl, editor. Graph Drawing, 7th International Symposium, GD ’99,
Stirín Castle, Czech Republic, September 1999, Proceedings, volume 1731 of
Lecture Notes in Computer Science, 1999. Springer.

W. Lai and P. Eades. A graph model which supports flexible layout func-
tions. Technical Report 96–15, University of Newcastle, 1996.

J. Lamping and R. Rao. The hyperbolic browser: A focus + context technique
for visualizing large hierarchies. Journal of Visual Languages and Computing,
7(1):33–55, 1996.

LEDA. http://www.algorithmic-solutions.com/.

T. Lengauer and E. Wanke. Efficient solution of connectivity problems on
hierarchically defined graphs. SIAM Journal on Computing, 17(6):1063–
1080, 1988.

138

http://www2.cs.uregina.ca/~hepting/research/web/words/index.html
http://www2.cs.uregina.ca/~hepting/research/web/words/index.html
http://www.algorithmic-solutions.com/

Bibliography

G. Liotta, editor. Graph Drawing, 11th International Symposium, GD 2003,
Perugia, Italy, September 21–24, 2003, Revised Papers, volume 2912 of Lecture
Notes in Computer Science, 2004. Springer.

I. A. Lisitsyn and V. N. Kasyanov. Higres – visualization system for clustered
graphs and graph algorithms. In Kratochvíl (1999), pages 82–89.

K. A. Lyons, H. Meijer, and D. Rappaport. Algorithms for cluster busting in
anchored graph drawing. Journal of Graph Algorithms and Applications, 2
(1):1–24, 1998.

J. Marks, editor. Graph Drawing, 8th International Symposium, GD 2000, Colo-
nial Williamsburg, VA, USA, September 20–23, 2000, Proceedings, volume
1984 of Lecture Notes in Computer Science, 2001. Springer.

C. McCreary, R. Chapman, and F.-S. Shieh. Using graph parsing for auto-
matic graph drawing. IEEE Transactions on Systems, Man, and Cybernetics,
28(5):545–561, 1998.

E. M. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):
257–276, 1985.

E. B. Messinger, L. A. Rowe, and R. R. Henry. A divide-and-conquer algo-
rithm for the automatic layout of large directed graphs. IEEE Transactions
on Systems, Man, and Cybernetics, 21(1):1–11, 1991.

G. Michal. Biochemical pathways (poster). Boehringer Mannheim, 1993.

K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout adjustment and the
mental map. Journal of Visual Languages and Computing, 6(2):183–210, 1995.

M. Müller-Hahnemann. Drawing trees, series-parallel digraphs, and lattices.
In Kaufmann and Wagner (2001), chapter 3, pages 46–70.

P. Mutzel, M. Jünger, and S. Leipert, editors. Graph Drawing, 9th International
Symposium, GD 2001 Vienna, Austria, September 23–26, 2001, Revised Papers,
volume 2265 of Lecture Notes in Computer Science, 2002. Springer.

H. Nagamochi and K. Kuroya. Convex drawing for c-planar biconnected
clustered graphs. In Liotta (2004), pages 369–380.

S. C. North, editor. Graph Drawing, Symposium on Graph Drawing, GD ’96,
Berkeley, California, USA, September 18–20, Proceedings, volume 1190 of
Lecture Notes in Computer Science, 1997. Springer.

139

Bibliography

S. C. North and G. Woodhull. Online hierarchical graph drawing. In Mutzel
et al. (2002), pages 232–246.

J. Pach, editor. Graph Drawing, 12th International Symposium, GD 2004, New
York, NY, USA, September 29–October 2, 2004, Revised Selected Papers, vol-
ume 3383 of Lecture Notes in Computer Science, 2004. Springer.

G. Parker, G. Franck, and C. Ware. Visualization of large nested graphs in
3d: Navigation and interaction. Journal of Visual Languages and Computing,
9(3):299–317, 1998.

F. Pfeiffer. Implementation eines Editors für Compound Graphen. Diplo-
marbeit, University of Passau, 2005.

F. P. Preparata, J. S. Vitter, and M. Yvinec. Output-sensitive generation of
the perspective view of isothetic parallelepipeds. Algorithmica, 8:257–283,
1992.

M. Pröpster. Visuelle Navigation in Compound Graphen. Diplomarbeit,
University of Passau, 2005.

H. C. Purchase. Performance of layout algorithms: Comprehension, not
computation. Journal of Visual Languages and Computing, 9(6):647–657,
1998.

H. C. Purchase, R.F.Cohen, and M. James. An experimental study of the
basis for graph drawing algorithms. The ACM Journal of Experimental
Algorithmics, 2(4), 1997.

M. Raitner. HGV: A library for hierarchies, graphs, and views. In Kobourov
and Goodrich (2002), pages 236–243.

M. Raitner. Maintaining hierarchical graph views for dynamic graphs. Tech-
nical Report MIP-0403, Universität Passau, 2004a.

M. Raitner. Visual navigation of compound graphs. In Pach (2004), pages
403–413.

M. Raitner. Dynamic tree cross products. In Proc. 15th Intl. Symposium
on Algorithms and Computation (ISAAC), volume 3341 of Lecture Notes in
Computer Science, pages 793–804. Springer, 2004c.

G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations, 1997. World Scientific.

140

Bibliography

G. Sander. Visualisierungstechniken für den Compilerbau. PhD thesis, Univer-
sität des Saarlandes, 1996a.

G. Sander. Layout of compound graphs. Technical Report A/03/96, Uni-
versität des Saarlandes, FB 14 Informatik, 1996b.

G. Sander. Graph layout for applications in compiler construction. Theoreti-
cal Computer Science, 217(2):175–214, 1999.

G. Sander. Personal communication, 2004.

M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proc.
ACM Conference on Human Factors in Computing Systems (CHI), pages 83–
91, 1992.

M. Sarkar and M. H. Brown. Graphical fisheye views. Communications of the
ACM (CACM), 37(12):73–84, 1994.

F. Schreiber. Visualisierung biochemischer Reaktionsnetze. PhD thesis, Fakultät
für Mathemetik und Informatik, Universität Passau, 2001.

F.-S. Shieh and C. McCreary. Directed graphs drawing by clan-based de-
composition. In Brandenburg (1996), pages 472–482.

F.-S. Shieh and C. L. McCreary. Clan-based incremental drawing. In Marks
(2001), pages 384–395.

SRS. SRS: Sequence Retrieval System. http://srs.ebi.ac.uk.

Statistisches Bundesamt Deutschland. Ausstattung privater Haushalte mit
Informations- und Kommunikationstechnik Ergebnis der Einkommens-
und Verbrauchsstichprobe 1998 und 2003, 2004. http://www.destatis.de/
basis/d/evs/budtab6.php.

K. Sugiyama and K. Misue. An overview of diagram based idea organizer:
D-ABDUCTOR. Technical Report IIAS-RR-93-3E, International Institute
for Advanced Study of Social Science, Fujitsu Laboratories Ltd., March
1993.

K. Sugiyama and K. Misue. Visualization of structural information: Auto-
matic drawing of compound digraphs. IEEE Transactions on Systems, Man,
and Cybernetics, 21(4):876–892, 1991.

K. Sugiyama and K. Misue. A generic compound graph visual-
izer/manipulator: D-ABDUCTOR. In Brandenburg (1996), pages 500–
503.

141

http://srs.ebi.ac.uk
http://www.destatis.de/basis/d/evs/budtab6.php
http://www.destatis.de/basis/d/evs/budtab6.php

Bibliography

K. Sugiyama, S. Tagawa, and M. Toda. Method for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-11(2):109–125, 1981.

R. Tamassia and I. G. Tollis, editors. Graph Drawing, DIMACS International
Workshop, GD ’94, Princeton, New Jersey, USA, October 10–12, 1994, Proceed-
ings, volume 894 of Lecture Notes in Computer Science, 1995. Springer.

R. E. Tarjan. Amortized computational complexity. SIAM Journal on Alge-
braic and Discrete Methods, 6(2):306–318, apr 1985.

A. K. Tsakalidis. Maintaining order in a generalized linked list. Acta Infor-
matica, 21:101–112, 1984.

P. van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Information Processing Letters, 6(3), 1977.

P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of
an efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

R. Weiskirchner. Drawing planar graphs. In Kaufmann and Wagner (2001),
chapter 2, pages 23–45.

S. Whitesides, editor. Graph Drawing, 6th International Symposium, GD ’98,
Montréal, Canada, August 1998, Proceedings, volume 1547 of Lecture Notes
in Computer Science, 1998. Springer.

D. E. Willard. Examining computational geoemtry: van Emde Boas trees,
and hashing from the perspective of the fusion tree. SIAM Journal on
Computing, 29(3):1030–1049, 2000.

D. E. Willard. Good worst-case algorithms for inserting and deleting records
in dense sequential files. In C. Zaniolo, editor, Proceedings of the 1986 ACM
SIGMOD International Conference on Management of Data, Washington, D.C.,
May 28–30, 1986, pages 251–260. ACM Press, 1986.

142

List of Figures

1.1 Clipping of the New York Metro map 2
1.2 Clipping of the biochemical pathway wall chart 3
1.3 Example of a biochemical pathway 6
1.4 Example of a compound digraph 12
1.5 A compound digraph depicted as an inclusion diagram . . . 12
1.6 Upper subtree in a compound digraph 17
1.7 Example of a view . 17
1.8 Upper subtree depicted as an inclusion diagram 17
1.9 View depicted as an inclusion diagram 17
1.10 Example for expand, before 21
1.11 Example for expand, after . 21
1.12 Example for split, before . 21
1.13 Example for split, after . 21
1.14 Example for merge, before . 21
1.15 Example for merge, after . 21
1.16 The update scheme vs. a complete relayout 27
1.17 Screenshot showing three views 32

2.1 Example of a three-dimensional tree cross product 37
2.2 The set S(·) . 40
2.3 The three-dimensional set S3(·) 47
2.4 The two-dimensional projection of the set S3(u1) 47
2.5 compound digraph modeled as tree cross product 59
2.6 Initial view . 60
2.7 View after contracting the highlighted node v 60
2.8 Using edgeExpand in expand yields too many edges 60

3.1 Edges in the derived compound digraph 69
3.2 Example of a layer assignment 71
3.3 Improper edge with parent(u) = parent(v) 72
3.4 Improper edge with clev(parent(u)) = clev(parent(v)) . . . 72
3.5 Improper edge . 73
3.6 Inserting a dummy node complex 73

143

List of Figures

3.7 Remaining improper edge . 73
3.8 Complete replacement of an improper edge 73
3.9 Example of a local hierarchy 74
3.10 Non-uniform heights result in edge-node crossings 75
3.11 Bends . 79
3.12 Additional layers in the updated assignment 83
3.13 Updated layer assignment . 83
3.14 Layer assignment after re-applying the original algorithm . 83
3.15 Dummy nodes and edges for a contracted edge 87
3.16 Dummy nodes and edges for the expanded edges 87
3.17 Expanding edges up to the first dummy node 87
3.18 Grouping dummy nodes for the expanded edges 87
3.19 Order for an incoming edge lying to the left 90
3.20 Order for an incoming edge lying to the right 90
3.21 Order for an outgoing edge lying to the left 90
3.22 Order for an outgoing edge lying to the right 90
3.23 Reusing of local coordinates 93
3.24 Increase in area as affected by the number of nodes n 97
3.25 Increase in area as affected by the density δ 97
3.26 Increase in area as affected by the number of children γ . . . 97
3.27 Decrease in crossings as affected by the number of nodes n . 99
3.28 Decrease in crossings as affected by the density δ 99
3.29 Decrease in crossings as affected by the number of children γ 99
3.30 Performance gain as affected by the number of nodes n . . . 100
3.31 Performance gain as affected by the density δ 100
3.32 Performance gain as affected by the number of children γ . . 100
3.33 Example of a randomly generated compound digraph 103
3.34 Increase in area as affected by the number of nodes n 104
3.35 Decrease in crossings as affected by the number of nodes n . 104
3.36 Performance gain as affected by the number of nodes n . . . 104

4.1 Screenshot of the proof-of-concept implementation 108
4.2 Schematic overview of the Model-View-Controller paradigm 110
4.3 Complete class diagram . 111
4.4 Class diagram of the model 114
4.5 Class diagram of the MVC-view 118
4.6 Class diagram of the controller 121
4.7 Screenshots before and after expanding a node 122
4.8 Sequence diagram for expanding a node 123
4.9 Sequence diagram showing one step of the animation 124

144

List of Figures

4.10 Sequence diagram for adding a new leaf. 126

145

List of Tables

1.1 Variants of graph view maintenance 22

2.1 Results for d-dimensional tree cross products 58
2.2 Results for graph view maintenance 66

147

Index

Symbols
E(u) . 37
N(v) . 59
S(u1) . 40
Sd+1(u1) . 46
D = (V, E, F) . 80
D′ = (V′, E′, F′) 80
G = (V, E) . 37
Opt(U, v) . 62
clev : V → ⋃

i∈N Ni 69
type : FD → {≺,�} 69
max(u) . 40
min(u) . 40
σ . 73
DA = (V, E, FA, clev) 81
DA
′ = (V′, E′, FA

′, clev′) 81
DO = (VP, EP, FP, clev, σ) 86
DO
′ = (VP

′, EP
′, FP

′, clev′, σ′)89
DP = (VP, EP, FP, clev) 84
DP
′ = (VP

′, EP
′, FP

′, clev′) 85
DA = (V, E, FA, clev) 69
DD = (V, E, FD, type) 69
DF = (V, E, FF, type) 70
DO = (VP, EP, FP, clev, σ) 73
DP = (VP, EP, FP, clev) 71

A
abridgment . 18, 33
absolute coordinate 75, 92
adjacency edge . . 11, 12, 69, 70, 81, 84,

96, 101, 113
adjacency list . 52
aesthetic criteria 1–2, 8, 23
ancestor . 11

nearest ∼ . 15
angular resolution 25

animation 10, 29, 32, 34, 124
animation style 107, 109, 112, 119
AVL tree . 50

B
barycenter heuristic74, 76
BioPath . 5, 6
bipartite graph 5, 14, 36
block graph . 77
bottom layer 72, 80

C
change-propagation 110, 116
child . 11
cigraph . 13
clan-based decomposition 14
clipping . 3
clustered graph . . 13, 14, 16, 18, 20, 33,

35, 60, 64, 129
clustered planar graph 26
compound digraph . 11, 12, 17, 33, 59,

64
assigned ∼ 69, 70, 81–84
cycle-free ∼ 70
derived ∼69, 69, 70, 83, 96
ordered ∼ 73, 75, 86
proper assigned ∼ 71, 72, 84
randomly generated ∼ 95–96,

101–103
compound graph12, 33, 64
compound layer69, 70, 94
compressed tree 22, 44, 56

approximation 56
contract 19, 20, 59, 62, 67
contracted edge20, 83, 87, 105
contracted stratified tree 41, 42, 50
controller 110, 112, 121

149

Index

coordinate
absolute ∼ 75, 92
local ∼ 75, 92, 93

coordinate assignment 24, 76–79
crossing minimization

one sided 72, 74
crossing reduction 24, 74, 84, 86
CST see contracted stratified tree
cycle removal 24, 70, 81, 82

D
DAG see directed acyclic graph
deleteEdge 19, 38, 39, 44, 47, 55
deleteLeaf 19, 38, 39, 55
depth . 11
derived edge 4, 16, 38, 69, 83, 94
derived hyperedge 37, 38
derived hypergraph 37
descendant . 11
design pattern

Model-View-Controller10, 33, 34,
108, 110, 115, 127

Observer . . . 10, 107, 112, 117, 120,
127

Strategy . . . 107, 116, 117, 119, 127
digraph . 11

compound ∼ 11, 12, 17, 33, 59, 64
inclusion ∼ 11

directed acyclic graph 14
directed edge . 11
directed graph see digraph
drawing

force-directed ∼ . .9, 24, 29, 33, 34
layered ∼ 9, 24, 29
multilevel ∼ 25
nested ∼25, 67, 68
orthogonal ∼ 25
polyline ∼ . 23
straight-line ∼ 23

drawing convention. 23
drawing style . . . 23, 109, 112, 119, 127
dummy node 71, 72, 73, 87, 90
∼ complex.72, 73, 79
external ∼ . 88
local ∼ . 88, 91

dynamic graph drawing 26, 28

E
edge

adjacency ∼ . 11, 12, 69, 70, 81, 84,
96, 101, 113

derived ∼ 4, 16, 38, 69, 83, 94
directed ∼ . 11
inclusion ∼ 11
incoming ∼11
induced ∼ . 11
long-span ∼ 24
outgoing ∼ 11
proper ∼ 71, 72, 73, 86

edgeExpand 38, 39, 43–44, 47, 54,
59–60, 64, 81

edgeExpand algorithm 43
edgeQuery 38, 39–41, 46, 53–54
edgeReport . . . 38, 39, 41–43, 46, 53–54
edge routing 78–80
entity relationship diagram 30
expand 19, 20, 59–62, 67
expand algorithm 61
expanded edges . 20, 82, 84, 87, 88, 90,

91, 105
external dummy node 88

F
feedback arc set 70
fisheye view.3, 5, 7, 33
focus and context 3, 34
force-directed drawing9, 24, 29, 33, 34

G
global layering 30, 131
global order . 72
graph

bipartite ∼ 5, 14, 36
block ∼ .77
clustered ∼ . 13, 14, 16, 18, 20, 33,

35, 60, 64, 129
clustered planar ∼ 26
compound ∼ 12, 33, 64
directed ∼ see digraph
directed acyclic ∼ 14
hierarchical ∼ 12

150

Index

nearest neighbor ∼ 28
telephone call ∼2, 4, 8
undirected ∼ 11

graph drawing . 23
dynamic ∼ 26, 28
limits of ∼2–3

graph drawing software23
graph grammar 12

layout ∼ .13
graph view 5, 7, 14, 16, 16, 17
graph view maintenance.7, 18,

22, 31, 34, 35, 66, 80, 109, 110,
116, 127, 129

dynamic graph 7, 19, 64
dynamic graph and tree 7, 19
dynamic leaves . . 8, 19, 20, 23, 39,

57, 64, 129, 130
static . 7, 19

H
hammock . 36
height . 11
hierarchical graph 12
higraph . 13
horizontal compaction 77
hyperbolic view. 3, 7
hyperedge 5, 14, 22, 36, 37

derived ∼ 37, 38
hypergraph 5, 14, 36

derived ∼ . 37

I
incident node . 11
inclusion diagram 12, 17
inclusion digraph 11
inclusion edge . 11
inclusion tree 12, 17
incoming edge . 11
induced edge . 11
internal node . 11

L
layer

bottom ∼ 72, 80
compound ∼ 69, 70, 94
local ∼ 70, 71, 81, 86

top ∼ . 72, 80
layer assignment 24, 69–71, 81, 83,

93–96
layered drawing 9, 24, 29, 67
∼ of compound digraphs . 30, 67,

68, 130, 131
layout graph grammar 13
leaf . 11
left expansion set 64
level ancestor 43, 51–53
list labeling . . . see order maintenance
local coordinate 75, 92, 93
local dummy node 88, 91
local hierarchy 73, 74, 76, 91

metrical ∼ 76, 78
local layer 70, 71, 81, 86
local layering . 30
local order 72, 86, 92
long-span edge.24
longest path layering 77

M
mental map 8, 10, 27, 30, 32, 67, 68, 81,

86, 93–95, 105, 130
merge . 19, 20, 33
metrical local hierarchy 76, 78
minimum separation constraint . . . 76
model 110, 113, 114
multilevel drawing. 25
MVC-view 110, 112, 117, 118

N
nearest ancestor 15
nearest neighbor graph.28
nested drawing 25, 67, 68
newEdge 19, 38, 39, 44, 47, 54–55
newLeaf 19, 38, 39, 48, 55
node . 11

dummy ∼ 71, 72, 73, 87, 90
internal ∼ . 11

node induced subgraph 11

O
order

global ∼ . 72
local ∼ 72, 86, 92

151

Index

order maintenance 48–50, 52, 129
orthogonal drawing 25
orthogonal ordering model 28, 30
outgoing edge. .11
overview reaction 5, 6

P
parent . 11
path. .11
pathway 3, 5–7, 29
PERT chart . 9, 30
polyline drawing 23
presentation style 109, 112, 117
priority layout method 76, 76–78
priority search tree 45
proper edge.71, 72, 73, 86
proximity relation 28
pruning . 15

R
reaction . 5, 6
reaction network 2, 8, 9, 14, 18, 29
red-black tree . 50
right expansion set 64
root . 11
rooted tree . 11

S
scaling . 7

non-uniform ∼ 5
scrolling . 3
similarity measure 28
software

graph drawing ∼ 23
software architecture . 31, 32, 107, 108,

127, 130, 131
key features 32

split . 19, 20, 33
splitting method.74, 88, 91
spring embedder . . . see force-directed

drawing
statechart . 13, 26
straight-line drawing. 23

subtree . 11
upper ∼ 15, 15–17

successor . 41, 54

T
telephone call graph 2, 4, 8
text indexing . 35
top layer .72, 80
tree

compressed ∼ 22, 44, 56
contracted stratified ∼ . 41, 42, 50
inclusion ∼ 12, 17
rooted ∼ . 11
van Emde Boas ∼41

tree cross product22, 36, 37, 40, 47, 56,
58, 59, 63

tree view . 18
2-3 tree . 50, 53–55

U
UML diagram 9, 30
undirected graph. 11
unrelated nodes 11
updateLevels algorithm 82
updateOrdered algorithm 89
updateProper algorithm 85
update scheme9, 10, 31, 32, 68, 95, 105,

130
upper subtree 15, 15–17

V
van Emde Boas tree 41
vertical alignment 77
view see graph view

fisheye ∼ 3, 5, 7, 33
graph ∼ 5, 7, 14, 16, 16, 17
hyperbolic ∼ 3, 7
tree ∼ . 18

visualization . 1, 67
visually inverse 30, 31, 68, 94, 105, 130

Z
zooming . 3

152

	Abstract
	Introduction
	Terminology
	Graph View Maintenance
	Problem Definition
	Previous Solutions
	Dynamic Tree Cross Products

	Visual Navigation
	Drawing Ordinary Graphs
	Drawing Hierarchically Structured Graphs
	Dynamic Aspects of Graph Drawing
	Dynamic Layered Drawings of Compound Digraphs

	Interactive Editor and Viewer
	Key Features
	Previous Solutions

	Dynamic Tree Cross Products
	Tree Cross Products
	Naive Approach
	Static Trees
	The Two-Dimensional Case
	Higher Dimensions

	Dynamization: Inserting and Deleting Leaves
	The Two-Dimensional Case
	Higher Dimensions

	Application to Graph View Maintenance
	Modeling
	Complexity
	Comparison

	Summary

	Visualization
	Static Layered Drawings of Compound Digraphs
	Step I: Hierarchization
	Step II: Normalization
	Step III: Crossing Reduction
	Step IV: Metric Layout

	Expansion
	Step I: Hierarchization
	Step II: Normalization
	Step III: Crossing Reduction
	Step IV: Metric Layout

	Contraction
	Experimental Results
	Summary

	Architecture
	Design Goals
	High-Level Architecture
	Low-Level Architecture
	Model
	MVC-View
	Controller

	Use Cases
	Expansion
	Adding a Leaf

	Summary

	Conclusion
	Results
	Open Problems and Future Work

	Bibliography
	List of Figures
	List of Tables
	Index

