
Visual Navigation of Compound Graphs

Preprint

Marcus Raitner

University of Passau, D-94032 Passau, Germany,
Marcus.Raitner@Uni-Passau.De

Abstract. This paper describes a local update scheme for the algorithm
of Sugiyama and Misue (IEEE Trans. on Systems, Man, and Cybernet-
ics 21 (1991) 876–892) for drawing views of compound graphs. A view is
an abstract representation of a compound graph; it is generated by con-
tracting subgraphs into meta nodes. Starting with an initial view, the
underlying compound graph is explored by repeatedly expanding or con-
tracting meta nodes. The novelty is a totally local update scheme of the
algorithm of Sugiyama and Misue. It is more efficient than redrawing the
graph entirely, because the expensive steps of the algorithm, e. g., level
assignment or crossing minimization, are restricted to the modified part
of the compound graph. Also, the locality of the updates preserves the
user’s mental map: nodes not affected by the expand or contract opera-
tion keep their levels and their relative order; expanded edges take the
same course as the corresponding contracted edge.

1 Introduction

A well-established technique to deal with huge graphs is to partition them re-
cursively into a hierarchy of subgraphs; this leads to compound graphs [1] or
clustered graphs [2]. Within both models, abstract representations of the graph,
so-called views, can be defined [3, 4]. Intuitively, a view is generated by con-
tracting subgraphs not needed in detail into meta nodes. Edges from within the
contracted subgraph to nodes outside become edges from the meta node to the
outside node. Views can be used for interactively exploring a large graph: one
can choose which subgraphs to contract into meta nodes and which to expand.
To this end, it is important that the drawing of the current view can be adjusted
efficiently after these operations such that the user’s mental map [5] is preserved.
In this paper, an update scheme for the compound graph drawing algorithm of
Sugiyama and Misue [1] is presented. Particular emphasis is laid on the locality
of the updates: every expand and contract has only a local effect. The drawing of
the new graph is computed only on the manipulated subgraph. This is a signifi-
cant improvement for the time consuming phases of the algorithm, such as level
assignment or crossing minimization. The user’s mental map of the old view is
preserved by keeping all uninvolved nodes on their levels and in the same relative
order. Furthermore, expanded edges take the same course as the corresponding
contracted edge.

Fig. 1. A compound digraph; the hierar-
chy tree is depicted by the inclusion of the
dashed rectangles

Fig. 2. The view having as leaves the
darker shaded nodes of the compound di-
graph in Fig. 1

1.1 Problem Description

A compound digraph D = (V,E, F) consists of nodes V , inclusion edges E, and
adjacency edges F . It is required that the inclusion digraph T = (V,E) is a
rooted tree, and no adjacency edge connects a node to one of its descendants or
ancestors; see Fig. 1. For convenience, we adopt the terminology of [1]: for a node
v ∈ V , let Ch(v) denote the set of all children of v and Pa(v) the parent of v in T .
The descendants of v, De(v), are all nodes in the subtree rooted at v (including
v). The depth of v, depth(v), is the number of nodes on the path from the root of
T to v. A view of D is a compound digraph D[U] = (U,E[U], F [U]) given by the
nodes U ⊆ V , such that T [U] = (U,E[U]) with E[U] = {(u, v) ∈ E | u, v ∈ U}
is connected and contains the root of T ; additionally, the leaves of T [U] must
cover the leaves of T , i. e., for each leaf u of T , (exactly) one of its ancestors is
a leaf in T [U]; thus, T [U] is a subtree of T from the root. The adjacency edges
F [U] comprise all edges (u, v) ∈ F with u, v ∈ U as well as induced edges: two
leaves u, v ∈ U are connected by an induced edge if and only if there are nodes
u′ ∈ De(u) and v′ ∈ De(v) such that u′ and v′ are connected by an adjacency
edge (u′, v′) ∈ F . Intuitively, given the designated set of leaves of T [U], a view is
constructed by shrinking each such leaf and all its descendants in T into a single
meta node; see Fig. 2.

For the visual navigation of the underlying compound digraph D, the follow-
ing operations shall be performed on a view D[U]:

– expand(v), where v is a leaf in T [U]; refines the view at v, i. e., the result is
the view D[U ′] with U ′ = U ∪ Ch(v),

– contract(v), where Ch(v) are leaves in T [U]; coarsens the view at v, i. e.,
the result is the view D[U ′] with U ′ = U \ Ch(v).

This paper concentrates on visualizing the above operations. We start with
an initial layout of some view D[U], and the user iteratively applies expand or
contract operations; after each operation the previous layout has to be adjusted.
Clearly, the obvious solution is redrawing the complete graph; unfortunately, it
is neither efficient nor will it preserve the users mental map [5], which can be
seen by comparing Figs. 3 and 5. In this context, our notion of preserving the
mental map is that all old nodes U stay on their levels with their relative order

Fig. 3. Before expanding
the shaded node

Fig. 4. Result of our update
scheme

Fig. 5. Result of redrawing

unchanged; furthermore, expanded edges should take the same course as the
corresponding contracted edge.

Our solution is an update scheme for the algorithm of Sugiyama and Misue [1]
for drawing compound graphs. This algorithm, briefly recalled in Sect. 2, con-
sists of four steps, which produce intermediate results. The initial view is laid
out with the original algorithm; after each expand or contract operation, the
intermediate results of the previous run are adjusted with our update scheme,
as described in Sect. 3.

1.2 Related Work

There are several algorithms for drawing compound graphs, most notably the
one of Sander [6], which differs from the algorithm of Sugiyama and Misue [1],
among other things, by its global layering. While producing more compact –
and supposedly more pleasant layouts –, this global layering is more difficult to
update than the local layering of Sugiyama and Misue.

Dynamic or online graph drawing concentrates on updating layouts of ordi-
nary graphs subject to insertions and deletions of nodes and edges [7]. The client-
server model for online hierarchical graph drawing of North and Woodhull [8]
allows insertion and removal of subgraphs, but only for ordinary DAGs and not
for compound graphs. By using a clan-based hierarchical decomposition, the in-
cremental drawing approach for DAGs of Shieh and McCreary [9] restricts the
adjustments of the layout to the modified part. Visual navigation of compound
(or clustered) graphs by expanding and contracting nodes has been introduced
by Sugiyama and Misue [1], but they seem to implement them through reapply-
ing their algorithm. Huang and Eades [10] briefly describe a system for handling
huge clustered graphs visually, but their layout method is force-directed.

The visualization system of Abello and Korn [11] supports the interactive ex-
ploration of very large clustered graphs. They also use views as an abstraction of
the underlying graph and provide methods for expanding edges. This expansion,
however, restricts the view to the expanded edge, whereas our method preserves
the relations of the expanded part to the remainder.

An efficient data structure supporting expand and contract, also known
as graph view maintenance problem [3, 4, 12], is indispensable for an efficient
implementation of the update method proposed in this paper. To this end, the
software architecture of [13] should be considered as well.

2 Static Compound Graph Drawing

We recall the algorithm of Sugiyama and Misue [1] briefly, because our update
scheme uses the intermediate results of these steps.

2.1 Step I: Hierarchization

Input of this step is the original compound graph D = (V,E, F); the result
is the assigned compound graph DA = (V,E, FA, clev), where clev : V → IN+

maps each node to its compound level and FA are the adjacency edges F oriented
from lower to higher level. This step internally uses the derived compound graph
DD = (V,E, FD, type); the edges FD with their types type : FD → {<,≤} are
derived from F by replacing every adjacency edge (u, v) ∈ F with edges between
those ancestors of u and v having equal depth. The deepest such edge is of type
<; all others of type ≤; see Fig. 6.

After resolving cycles in DD, compound levels are assigned to the resulting
cycle-free graph DF = (V,E, FF , type). The root is placed on level (1); then
children of already placed nodes are treated recursively. Note that the children of
all nodes on the same level are always evaluated in a common recursive call. The
local level of the children is determined by a standard level assignment algorithm
that takes into account the two types of edges: type(u, v) = < enforces that the
level of u is less than the level of v; with type ≤ the levels may also be equal.
The compound level of a child v, clev(v), is built by appending its local level
to its parent’s compound level, clev(Pa(v)). Finally, the adjacency edges F are
oriented from lower to higher level. Let the complexity of this step be O(SI(n)),
where n is the size of the input D.

2.2 Step II: Normalization

In this step all adjacency edges of the assigned compound digraph DA are made
proper : an edge (u, v) is proper if clev(Pa(u)) = clev(Pa(v)) and tail(clev(u)) =
tail(clev(v)) + 1, i. e., the parents lie on the same level and the children’s levels
differ by one. This is achieved by replacing each improper edge (u, v) with a
linear compound graph as in Fig. 7. The result of this step is the assigned proper
compound graph DP = (VP , EP , FP , clev). Let the complexity of this step be
O(SII(n)), where n is the size of the input DA.

2.3 Step III: Vertex Ordering

Given the assigned proper compound graph DP , this step calculates the relative
order of the nodes on each level, so as to minimize edge crossings. To this end,

≤

<

Fig. 6. The two dashed edges are derived
from the solid one

u

v

Fig. 7. Dummy nodes replace the im-
proper edge (u, v)

the local order of all inner nodes’ children on their levels is determined. The
result of this step is the ordered compound graph DO = (VP , EP , FP , clev, σ),
where for each inner node u ∈ VP , σ describes the local order of u’s children.

The vertex ordering algorithm works depth-first: at an inner node u the
compound graph induced by De(u) is reduced to an ordinary DAG, the local
hierarchy, by shrinking each child of u into a single node. This leads to two
types of edges in the local hierarchy: edges between adjacent levels and those
connecting nodes on the same level. A child u′ of u or a descendant of u′ may
be adjacent to a node v 6∈ De(u). By the definition of a proper edge, it follows
that u and Pa(v) lie on the same level. Since the algorithm has already ordered
the children of all ancestors of u, it is known whether v lies to the left or to the
right of u. Therefore, each child u′ is annotated with two values λ(u′) and ρ(u′)
counting the edges going to the left and to the right, respectively.

The crossing minimization for the local hierarchy starts with a preprocessing
step – the so-called splitting-method – pinning the children u′ with λ(u′)−ρ(u′) >
0 to the left end and those with λ(u′) − ρ(u′) < 0 to the right end of their
level; the larger |λ(u′)− ρ(u′)| is, the nearer to the end the node is placed. For
the remaining nodes the crossings are minimized with a modified bary center
heuristic that takes into account the horizontal edges. Let the complexity of this
step be O(SIII(n)), where n is the size of the input DP .

2.4 Step IV: Metric Layout

This step assigns coordinates and dimensions to the nodes of the ordered com-
pound graph DO. A recursive algorithm assigns local coordinates to the children
relative to their parents position; for an inner node u it is applied to all children
of u first, thus determining their width and height. The local coordinates are op-
timized with the so-called priority method on the metrical local hierarchy, which
is basically the local hierarchy from the previous step without the horizontal
edges. Similar to the bary center heuristic for minimizing crossings, the priority
method improves the nodes positions by moving them – as far as possible with-
out changing the order on the level – to their respective (metrical) bary centers.
A final depth-first traversal calculates the absolute coordinates. The first phase
is done with a recursive algorithm. Let the complexity of this step be O(SIV(n)),
where n is the size of the input DO.

3 Update Scheme

Let D[U] = (U,E[U], F [U]) be a view of a compound graph D = (V,E, F),
where D[U] already has been drawn with the standard algorithm; node v ∈ U
shall be expanded, resulting in a new view D[U ′] = (U ′, E[U ′], F [U ′]), with
U ′ = U ∪ Ch(v). It is assumed that, given D[U], the structure of D[U ′] can
be determined efficiently, which is where the data structures for maintaining
hierarchical graph views [3, 4, 12] come into play.

3.1 Step I: Hierarchization

In this step the assigned compound digraph has to be updated. In order to
preserve the mental map, all old nodes u ∈ U stay on their levels; only for
the children of v appropriate levels are determined. In other words, the level
assignment function clev : U → IN+ has to be extended to the set U ′. Expanding
v in the cycle-free graph DF [U] inherits the direction of edges incident to v to
all corresponding expanded edges, i. e., if an edge was reversed during the cycle
removal of the previous run, all corresponding expanded edges are reversed as
well. In this setting, it is obvious that new cycles entirely consist of newly added
edges, and the cycle removal can be restricted to the children of v.

From the definition of the derived graph, it follows that all edges adjacent
to a leaf are of type <, and in the level assignment algorithm an edge of type
< causes the target node to be placed on a higher level than the source node.
Therefore, v is not connected to any node on its level; neither is any child of
v in the updated cycle-free graph DF [U ′]. Consequently, the level assignment
does not need to take into account children of nodes on the same level as v,
but can be restricted to the subgraph of DF [U ′] induced by the children of v.
After the level assignment clev has been extended to U ′, updating the assigned
compound digraph DA[U] to DA[U ′] is just a matter of adding Ch(v) (and the
corresponding inclusion edges) and inserting the new adjacency edges directed
from lower to higher levels; induced adjacency edges incident with v are removed.

How much does the updated assigned compound digraph differ from the one
the hierarchization algorithm of Sect. 2.1 applied to D[U ′] would have produced?
Since all old nodes stay on their level, it is not possible to place ancestors of v’s
neighbors on the same level as v. Compare, for instance, Fig. 9, which shows
the level assignment produced by our update scheme, and Fig. 10, which would
be the result of the hierarchization algorithm applied anew. The adjacency edge
(u, v) in Fig. 8 leads to a type < derived edge (Pa(u), v), which results in Pa(u)
being placed on a level above v, where it is bound to stay during our update. If
the derived graph would be built anew, this edge were of type ≤, and Pa(u) and
v were placed on the same level, as shown in Fig. 10.

Property 1. Let k denote the number of elements added to D[U] by expanding
v. The complexity of updating the assigned compound digraph DA[U] is O(SI(k)),
compared to O(SI(n + k)) for reapplying step I to D[U ′], where n is the size of
D[U]. The user’s mental map is supported by keeping all old nodes U on their
level.

v

u

Fig. 8. Before expanding v

v

u

Fig. 9. Update of the de-
rived graph

vu

Fig. 10. Building the de-
rived graph anew

3.2 Step II: Normalization

The assigned proper compound graph DP [U] is updated in two steps: first the
node v is expanded and then the new improper adjacency edges are made proper.
Expanding v means to add Ch(v) with appropriate inclusion edges, (induced)
adjacency edges between two children of v, and those between a child of v and
some other node u 6∈ Ch(v). For the latter the old induced edge connecting v
and u has to be removed; if this edge has been made proper all the associated
dummy nodes and edges are removed as well. Since the levels of the old nodes
U are unchanged, the only improper edges are adjacent to at least one child of
v. They are made proper exactly as described in Sect. 2.2. In the worst case this
has to be done for every new adjacency edge, whereas for the other adjacency
edges the construction from the previous proper compound digraph DP [U] is
reused. Clearly, the result is exactly the same as if the normalization had been
applied to the updated assigned compound digraph DA[U ′] as a whole.

Property 2. Let k denote the number of elements added to DA[U] by expanding
v. The complexity of updating the proper, assigned compound digraph DP [U] is
O(SII(k)), compared to O(SII(n + k)) for reapplying step II to DA[U ′], where n
is the size of DA[U].

3.3 Step III: Vertex Ordering

In this step preserving the mental map means to keep the order of nodes that are
common in the old and the new graph: only for the nodes that have been added
during the update from DP [U] to DP [U ′] a position in the relative order on the
respective levels has to be determined. These nodes are either children of v –
including dummy nodes for edges between two children of v – or dummy nodes
that belong to an edge between a child of v and a node u 6∈ Ch(v). As described
in Sect. 2.3, the vertex ordering algorithm recursively calculates local orders for
the children of an inner node on their levels; hence, determining the order of the
children of v is just a matter of applying the algorithm to the subtree rooted at
v. A precondition, however, is that the children of all ancestors of v already have
been ordered. Therefore, the positions of dummy nodes that are not children of
v have to be fixed prior to ordering the children of v.

Consider an induced edge (v, u) ∈ F [U] (and symmetrically for an edge
(u, v)); after expanding v, children v1, . . . , vk inherit this edge. Clearly, the sub-
graph inserted to make any of the (vi, u) proper is – except for an extra dummy

u

v

w

Fig. 11. Two proper non-
local edges (v, u) and (v, w)
before expanding v

u
v

w

Fig. 12. After expanding v,
the two new dummy node
complexes inherit the order
of u and w

v

Fig. 13. The order of the
dummy nodes is determined
by the order of v’s children

node complex on the level of v – identical to the one for edge (v, u). The idea is
to reuse the positions of dummy nodes of the edge (v, u) for the dummy nodes
of the edges (v1, u), . . . , (vk, u). The dummy nodes of these edges are treated as
one block; the position of the block is the position of the respective dummy node
of the edge (v, u). This reusing has the effect that the expanded edges take the
same course as the old edge.

Since the positions of the old dummy nodes are reused, it can be assumed
without loss of generality that the edge (v, u) is proper; if it is not, it suffices
to expand the edge from v to the first dummy node of (v, u), which is proper.
Expanding the proper edge (v, u) results in improper edges (v1, u), . . . , (vk, u);
see Figs. 11 and 12. Each edge (vi, u) is made proper with a dummy node complex
consisting of nodes pi and ci with Pa(ci) = pi and edges (vi, ci) and (pi, u); the
nodes pi are siblings of v and lie on the same level as v. We distinguish two
types of proper edges (v, u): a local edge has Pa(v) = Pa(u) and a non-local
edge Pa(v) 6= Pa(u). The reason is that if Pa(v) 6= Pa(u), the definition of
proper demands that Pa(v) and Pa(u) lie on the same level. Since the relative
position of old nodes must be preserved, it is known whether Pa(u) is to the
left or to the right of Pa(v). Clearly, this determines whether the dummy nodes
pi are to the left or to the right of v. For a local edge, the position of the new
dummy node can be anywhere on the level of v.

All dummy nodes pi belonging to the same expanded edge are treated as one
block; therefore, one representant p is sufficient. In the local hierarchy induced
by Pa(v)’s children, a representant p for expanded edges belonging to a non-
local edge (v, u) has λ(p) − ρ(p) = ±1, depending on whether Pa(u) lies to the
left (+1) or to the right (−1) of Pa(v). The splitting method (cf. Sect. 2.3)
puts p to the left or right end of the level, with the exact position determined
by the λ(p) − ρ(p) value. Let q be the representant for the expanded edges of
another non-local edge (v, w) such that λ(p) − ρ(p) = λ(q) − ρ(q). Then p and
q are indistinguishable in the splitting method; they are pinned to one end in
arbitrary relative order. This order, however, should be the same as for the nodes
u and w, which have both the same level clev(v) + 1. This problem, incidentally,
is immanent to the original algorithm of Sugiyama and Misue [1]. It can be solved
by taking the relative order of the end nodes of the expanded edges as secondary
sorting criterion in the splitting method. For our update scheme this means that
a representant p is placed into the old order σ according to λ(p) − ρ(p), and

if there are more nodes with the same value, the order of the respective end
nodes determines their order. Consider, for instance, the two dummy nodes on
v’s level in Fig. 12; having value −1 they are all placed to the right end. The
order derived from the order of u and w shown in Fig. 12 clearly is the best
choice.

After the splitting method, all representants for expanded edges of non-local
edges are fixed; it remains to do the same for local edges. If (v, u) and (v, w) are
two proper local edges, then u and w lie on the same level and thus determine
the relative order of the representants p and q of the expanded edges for (v, u)
and (v, w) respectively. Essentially, the only degree of freedom is whether to
place p or q right or left of v. It makes no sense to have some non-dummy node
x between p and v: otherwise the edges that p represents would cross x. In the
local hierarchy induced by Pa(v)’s children, dummy nodes like p and q have only
one outgoing edge; hence, their bary center is identical to the position of u and
w. The bary centers are used to decide whether representants are placed left or
right of v.

It remains to determine the relative order of the expanded edges within their
respective block. Since this order depends on the positions of v’s children, the
crossing reduction algorithm of Sect. 2.3 is applied to the local hierarchy of v first.
Note that this is possible without knowing the exact order of the expanded edges:
the representant already determines on which side they leave v; this information
is sufficient for the λ and ρ values of v’s children. Consider the edge (v, u) with
its expanded edges (v1, u), . . . , (vk, u). The order of the dummy nodes p1, . . . , pk

within the block represented by p is determined as follows: if p lies to the right
of v, and if vσ(1), . . . , vσ(k) is the order of v’s children from bottom to top and
within the same level from left to right, then pσ(1), . . . , pσ(k) is the order of the
dummy nodes from left to right; see Fig. 13. The case that p is right to v as well
as the two cases for an incoming edge (u, v) are symmetric.

Property 3. Let k denote the number of elements added to DP [U] by expanding
v. Then the complexity of updating the local order σ is O(SIII(k)), compared to
O(SIII(n + k)) for reapplying step III to DP [U ′], where n is the size of DP [U].
The relative order of all old nodes U is preserved and expanded edges take the
same course as the corresponding contracted edge.

3.4 Step IV: Metric Layout

Expanding v changes the width and height of v, which leads to adjustments of
the local coordinates for v’s siblings; this, in turn, changes the width and height
of Pa(v), and so on up to the root. On the other hand, the local coordinates
of children of a node that is no ancestor of v are not affected. As described in
Sect. 2.4, the metric layout consists of two steps: computing local coordinates
followed by a traversal of the hierarchy to sum them up to absolute coordinates.
Hence, we adjust the local coordinates at v and all its ancestors and then use
the second step unalteredly. For the updates of the local coordinates basically
the same recursive procedure as in Sect. 2.4 is used; the only difference is that

recursive calls are made only for ancestors of v. The local coordinates in the
subtrees rooted at nodes that are no ancestors are reused from the previous
layout.

Property 4. Let n denote the size of DO[U ′]. In the worst case, the complexity
of updating the coordinates is SIV(n). The final depth-first traversal to sum up
the absolute coordinates is completely applied in any case; the local coordinates
are adjusted only for ancestors of the expanded node.

4 Contraction

Contracting a node v that has been expanded with the above update scheme
is straightforward: in the contracted view D[U ′] all nodes are old, i. e., U ′ ⊆ U ;
hence, the level assignment clev and the vertex order σ just need to be restricted
to U ′. The position of the dummy nodes for a new induced edge incident to v is
given by the position of the blocks of the corresponding expanded edges. Since
the width and height of v has changed, the metric layout has to be updated as
described in Sect. 3.4. This has the side-effect that expanding and contracting
are also visually inverse, i. e., the drawing after expanding and contracting a
node v is the same as before expanding.

Why is contraction more complicated for nodes v that have not been ex-
panded with our update scheme? Consider a child v′ of v with an edge (u, v′)
such that v and Pa(u) lie on the same level, e. g., as in Fig. 10. As pointed out
in Sect. 3.1, this cannot happen if v has been expanded before, yet it is possible
in the layout of the initial view. Note that because of the deepest derived edge
being of type <, for each edge (x, y) the compound levels clev(x) and clev(y)
differ – after a common start sequence – by at least one position (cf. Sect. 2.1).
The induced edge (u, v), representing (u, v′) after contracting v, would violate
this invariant, because clev(v) would be a subsequence of clev(u). This problem
manifests itself in the derived graph: before contracting v the deepest edge, the
one of type <, was adjacent to v′ and is removed; therefore, the type of the
derived edge between v and the ancestor of u at the same depth as v would have
to be adjusted from ≤ to <, which could lead to substantial changes in the level
assignment and thus to the user’s mental map; see Fig. 9.

The easiest way to deal with this problem is to allow contraction only for
nodes that have been expanded before, i. e., no node of the initial view can be
contracted. Another way is to modify the algorithm of Sugiyama and Misue [1]
used for the initial view such that all edges in the derived graph are of type <.
The consequence is that the initial layout is less compact, because nodes with
descendants that are connected never lie on the same level.

Property 5. Let k denote the number of elements removed from DP [U]; then
the elements removed from the other (intermediate) compounds graphs are at
most k. Updating the drawing after contracting a node v that has been expanded
with our update scheme takes O(k) for steps I to III. Step IV is the same as
after expanding; see Property 4.

5 Summary

The proposed update scheme for the algorithm of Sugiyama and Misue [1] sup-
ports efficient visual navigation of compound graphs through expand and con-
tract operations. The locality of our update scheme makes it much more efficient
than redrawing the entire new view. For expanding a node the complexity of up-
dating the drawing essentially is determined by applying each of the steps I to
III to the modified part of the compound graph, followed by step IV adjusting
the coordinates. The user’s mental map of the old view is preserved well: old
nodes stay on their levels in the same relative order and expanded edges take
the same course as the corresponding contracted edge.

References

1. Sugiyama, K., Misue, K.: Visualization of structural information: Automatic draw-
ing of compound digraphs. IEEE Trans. on Systems, Man, and Cybernetics 21
(1991) 876–892

2. Eades, P., Feng, Q.W.: Multilevel visualization of clustered graphs. In: Proc. 4th
GD. Vol. 1190 of LNCS. (1996) 101–112

3. Buchsbaum, A.L., Westbrook, J.R.: Maintaining hierarchical graph views. In: Proc.
11th SODA. (2000) 566–575

4. Raitner, M.: Dynamic tree cross products. In: Proc. 15th ISAAC. LNCS. (2004)
5. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental

map. Journal of Visual Languages and Computing 6 (1995) 183–210
6. Sander, G.: Graph layout for applications in compiler construction. TCS 217

(1999) 175–214
7. Branke, J.: Dynamic graph drawing. In Kaufmann, M., Wagner, D., eds.: Drawing

Graphs – Methods and Models. Vol. 2025 of LNCS. Springer (2001) 228–246
8. North, S.C., Woodhull, G.: Online hierarchical graph drawing. In: Proc. 9th GD.

Vol. 2265 of LNCS. (2001) 232–246
9. Shieh, F.S., McCreary, C.L.: Clan-based incremental drawing. In: Proc. 8th GD.

Vol. 1984 of LNCS. (2000) 384–395
10. Huang, M.L., Eades, P.: A fully animated interactive system for clustering and

navigating huge graphs. In: Proc. 6th GD. Vol. 1547 of LNCS. (1998) 374–383
11. Abello, J., Korn, J.: MGV: A system for visualizing massive multigraphs. IEEE

Trans. on Visualization and Computer Graphics 8 (2002) 21–38
12. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching over tree

cross products. In: Proc. 8th ESA. Vol. 1879 of LNCS. (2000) 120–131
13. Raitner, M.: HGV: A library for hierarchies, graphs, and views. In: Proc. 10th

GD. Vol. 1528 of LNCS. (2002) 236–243

