
Dynamic Tree Cross Products

Marcus Raitner

University of Passau, D-94032 Passau, Germany,
Marcus.Raitner@Uni-Passau.De

Abstract. Range searching over tree cross products – a variant of clas-
sic range searching – recently has been introduced by Buchsbaum et al.
(Proc. 8th ESA, vol. 1879 of LNCS, pp. 120–131, 2000). A tree cross prod-
uct consist of hyperedges connecting the nodes of trees T1, . . . , Td. In this
context, range searching means to determine all hyperedges connecting
a given set of tree nodes. Buchsbaum et al. describe a data structure
which supports, besides queries, adding and removing of edges; the tree
nodes remain fixed. In this paper we present a new data structure, which
additionally provides insertion and deletion of leaves of T1, . . . , Td; it com-
bines the former approach with a novel technique of using search trees
superimposed over ordered list maintenance structures. The extra cost
for this dynamization is roughly a factor of O(log n/log log n). The trees
being dynamic is especially important for maintaining hierarchical graph
views, a problem that can be modeled as tree cross product. Such views
evolve from a large base graph by the contraction of subgraphs defined
recursively by an associated hierarchy. The graph view maintenance prob-
lem is to provide methods for refining and coarsening a view. In previous
solutions only the edges of the underlying graph were dynamic; with the
application of our data structure, the node set becomes dynamic as well.

1 Motivation

Many graphs, such as network traffic graphs, the web graph, or biochemical
pathways [1], are too large to display or edit them effectively. A well-established
technique to solve this problem is to partition the graph recursively into a hier-
archy of subgraphs. The complete road map of Europe, for instance, is a rather
large graph; a hierarchy on it can be defined, for instance, by grouping places
and roads within the same city, then the cities within the same state, and so
on. Not every city or state is always needed in full detail; the dispensable sub-
graphs, therefore, are contracted into a single meta node, representing the city
or state as a whole. Edges from within the contracted subgraph to nodes out-
side are retained as edges from the meta node to the outside place. This leads
to an abstract representation of the graph, a graph view, which is very conve-
nient, because both an overview of the whole graph and the necessary details
are displayed simultaneously.

In an interactive scenario, this facilitates exploring and editing a large graph:
the user can choose which subgraphs to contract into meta nodes and which
to expand, i. e., to replace with its subordinate subgraphs. Depending on the

admissible modifications of the hierarchy and the graph, Buchsbaum and West-
brook [2] differentiate three variants of this graph view maintenance problem: in
the static case the graph and the hierarchy are both fixed; in the dynamic graph
variant graph edges can be inserted or deleted; in the dynamic graph and tree
variant the graph additionally is subject to node insertions and deletions, and
the hierarchy may change through splitting and merging of clusters.

As shown in [3] and briefly recapitulated in Sect. 3, maintaining hierarchical
graph views can be formulated as a special case of range searching over tree
cross products. A tree cross product consists of disjoint trees T1, . . . , Td and a
set of d-dimensional hyperedges u = (u1, . . . , ud) with ui ∈ Ti for i = 1, . . . , d.
In this context, range searching means to decide efficiently whether there is
a hyperedge between the subtrees of given tree nodes and to report all those
hyperedges. In [3] the set of hyperedges is dynamic, but the trees are static; we
generalize this approach and allow insertion and deletion of leaves of T1, . . . , Tn

as well. After a formal definition of the problem, the data structure for the two-
dimensional tree cross product is described in Sect. 2.1, which then serves as
basis for the recursive description of the higher dimensional case in Sect. 2.2.

In Sect. 3 we introduce the new dynamic leaves variant of the graph view
maintenance problem for compound graphs [4], a more general model of hier-
archically structured graphs than the clustered graphs [5] used in previous ap-
proaches [2,3]. Formulated as a tree cross product, this problem can be solved
efficiently with our data structure. The new dynamic leaves variant extends the
dynamic graph variant by insertion and deletion of graph nodes, i. e., leaves of
the hierarchy. In contrast to the dynamic graph and tree variant, it lacks splitting
and merging of clusters. Thus, it is adequate for dynamic graphs with a fixed
hierarchical structure, such as network traffic graphs: computers are identified
by their IP addresses, edges represent traffic, and the hierarchy is given by the
structure of the IP addresses. The hierarchy is fixed, because the structure of an
IP address does not change. Further examples are road maps or biochemical reac-
tion networks [1], which consist of all reactions in some organism; the hierarchy
is often defined by grouping reactions that belong to the same biochemical path-
way, e. g., the citric acid cycle. Unable to handle graphs with a dynamic node
set, previous solutions [2,3] are not appropriate models for these applications.

2 Range Searching over Tree Cross Products

Let T = (V (T), E(T)) be a rooted tree with node set V (T) and edge set
E(T). For a node v ∈ V (T), let children(v) denote the set of all children of
v and parent(v) the parent of v. The descendants of v, desc(v), are all nodes
in the subtree rooted at v. Conversely, v is an ancestor of each u ∈ desc(v).
Given d disjoint, rooted trees T1, . . . , Td, consider a d-partite hypergraph G
such that V (G) =

⋃d
i=1 V (Ti) and E(G) ⊆

∏d
i=1 V (Ti) = V (T1) × · · · × V (Td).

We define n = |V (G)|, m = |E(G)|, and D = maxd
i=1 depth(Ti). For a tuple

u = (u1, . . . , ud) ∈
∏d

i=1 V (Ti), let

E(u) = {x = (x1, . . . , xd) ∈ E(G) | ∀ 1 ≤ i ≤ d : xi ∈ desc(ui)}

be the set of hyperedges between descendants of u’s elements; see Fig. 1 for an
example of a two-dimensional tree cross product. We call a tuple u an induced
hyperedge if E(u) 6= ∅; the induced hypergraph I consists of the node set V (I) =
V (G) and all induced hyperedges: E(I) = {u ∈

∏d
i=1 V (Ti) | E(u) 6= ∅}. In

the example of Fig. 1, for instance, the set E(v1, u2) contains three edges, but
E(u1, u2) is empty; this yields an induced edge (v1, u2) ∈ E(I), but none between
u1 and u2.

As defined in [3], the tree cross product problem is to perform the following
operations on tuples u ∈

∏d
i=1 V (Ti):

– edgeQuery(u) determines if E(u) 6= ∅, i. e., whether u is induced,
– edgeReport(u) determines the set E(u),
– edgeExpand(u, j), where 1 ≤ j ≤ d; determines all induced hyperedges

(u1, . . . , uj−1, x, uj+1, . . . , ud) ∈ E(I), where x ∈ children(uj).

Besides inserting and deleting hyperedges (newEdge(u) and deleteEdge(u)), our
data structure supports the following new operations for adding and removing
leaves:

– addLeaf(u), where u ∈ V (Tj); adds a new leaf to Tj as child of node u,
– deleteLeaf(u), where u is a leaf in V (Tj) and u is not the root of Tj ; removes

u and all hyperedges incident to it from Tj .

2.1 The Two-Dimensional Case

With [3] we share the idea to order the nodes of each tree T1 and T2 linearly
such that for each tree node v the set desc(v) is fully determined by min(v) and
max(v), the smallest and the largest node in the subtree rooted at v. Clearly,
traversing each tree in post-order yields such an order.

Since addLeaf(u) was defined to insert the new leaf as a child of u, insertions
occur at any point in the linear order. Therefore, simply assigning consecutive
integers to the nodes, as in [3], is inefficient, because all nodes following the new
one have to be renumbered. There are already efficient data structures for the
problem of performing order queries on an ordered list that is subject to insert
and delete operations [6,7]. All of them assign a numerical label (often integers)
to the elements, making the order query a simple comparison of the labels.
The most efficient solution allows all operations to be performed in O(1) worst-
case time [7, Sect. 3]. Using a technique for insertions and deletions in dense
sequential files [8] on the top level of a four-level data structure, it is, however,
rather complicated; a simpler, slightly less efficient, data structure might be more
suitable for an implementation. For example, [6] and [7, Sect. 2] both describe
solutions with O(1) amortized time for insert and delete and O(1) worst-case
time for order. Since our approach will treat the order maintenance component
as a black box, any will do, yet only with an O(1) worst-case solution the time
bounds of Theorems 1 and 2 are worst-case. Besides, we need access to the
successor and predecessor of a node in this order. If not already part of the order
maintenance structures, we separately maintain a doubly linked list of the nodes

for each tree. In the following, we use <, ≤, ≥, and > to compare two nodes
instead of the corresponding order query.

We keep the list of children at a tree node sorted according to the respective
order for the tree. In addition to the values min(u1) and max(u1), we store at
each tree node u1 ∈ V (T1) (and symmetrically for the nodes u2 ∈ V (T2)) the set

S(u1) = {u2 ∈ V (T2) | ∃(u′1, u2) ∈ E(G) : u′1 ∈ desc(u1)},

i. e., all nodes of the tree T2 that are connected to a node in the subtree of u1;
see Fig. 1. Although defined as a set, S(·) intrinsically is a multiset: it stores
multiple entries of the same node, because the entries correspond to edges, and
an edgeReport needs to find all of them. A node u′2 ∈ S(u1) ∩ desc(u2) indi-
cates an edge (u′1, u

′
2) ∈ E(G) for some u′1 ∈ desc(u1); if no such node exists,

no edge connects desc(u1) and desc(u2). Therefore, edgeQuery(u1, u2) can be
implemented by checking whether S(u1) ∩ desc(u2) = ∅.

v1

u1

u2

S(v1)

E(v1, u2)

Fig. 1. Example of a two-dimensional tree cross product. The dashed edges belong
to the two trees; the solid ones are the hyperedges E(G).

For the sets S(·) we need a data structure that, besides insert and delete,
efficiently supports the successor operation succ: for u1 ∈ V (T1) and u2 ∈
V (T2), succ(S(u1), u2) returns the smallest v ∈ S(u1) with v ≥ u2 or null
if no such element exists. Observe that S(u1) ∩ desc(u2) 6= ∅ if and only if
succ(S(u1),min(u2)) ≤ max(u2); thus, edgeQuery(u1, u2) returns true if and
only if succ(S(u1),min(u2)) ≤ max(u2) [3]. We maintain each set S(·) as a
balanced search tree with respect to the order provided by the corresponding
order maintenance data structure. Hence, insert, delete, and succ can be done
in O(log n) worst-case time, provided that the order operation is O(1) worst-
case time. Additionally, the leaves of the search trees are linked to facilitate the
edgeReport operation.

Remark 1. Instead of balanced search trees, in [3] contracted stratified trees
(CST) [9] are used for the sets S(·). These improve the time bounds for insert,
delete, and succ from O(log n) to O(log log n) and increase the required space
by a factor of O(log log n); both effects can be seen in Table 1. A CST, however,
stores a subset of a fixed integer universe; this is impractical here, because the
sets S(·) are subsets of the set of tree nodes, which is – in contrast to [3] –

Table 1. Summary of results and comparison for the d-dimensional data structure; all
bounds are worst-case. Let D = maxd

i=1 depth(Ti). For edgeReport and edgeExpand,
k denotes the size of the output. The edgeQuery and edgeReport bounds stated in [3]
do not include the additive d terms, but they seem unavoidable given the description.

Approach of [3] Our data structure

Space O(m(2D)d−1 log log n) O(m(2D)d−1)

edgeQuery(u) O(d + log log n) O(d + log n)
edgeReport(u) O(log log n + k) O(log n + k)
edgeExpand(u, j) O(d + k log log n) O(d + k log n)

newEdge(u) O((2D)d−1 log log n) O((2D)d−1 log n)

deleteEdge(u) O((2D)d−1 log log n) O((2D)d−1 log n)
addLeaf(u) n/a O(D)
deleteLeaf(u) n/a O(D)

dynamic. Apart from the universe not being fixed, using the integer labels of the
order maintenance structures [6,7] in a CST is complicated: during an insert
operation, nodes following the inserted one are possibly shifted, i. e., get a new
number. Hence, all sets S(·) containing a shifted node need to be updated.

In order to efficiently perform the edgeExpand operation (see Algorithm 1),
we need to determine the ancestor of a node at a given depth of the tree. This
level ancestor problem is well studied both in the static [10,11] and the dynamic
variant [12,13]. Since we need to add and remove leaves, we will use the dynamic
data structure described in [12]. It preprocesses a tree in linear time and space
such that level ancestor queries and adding leaves can be performed in O(1)
worst-case time [12, Theorem 6]. Deleting leaves is not explicitly mentioned
in [12], but it is obviously possible in constant time by simply deleting the leaf.
The space bound, however, would no longer be linear in the number of tree nodes.
Similar to maintaining dynamic arrays, we can rebuild the data structure when,
for instance, half of the nodes have been deleted. This takes O(1) amortized cost
per delete, but using the standard doubling technique we can distribute it over
a sequence of operations such that every operation is worst-case O(1).

Altogether, our approach combines the idea of [3] with our novel technique of
using search trees superimposed over order maintenance structures. This makes
the previous data structure more dynamic in regard to insertion and deletion
of leaves, while the slow-down for the other operations – roughly a factor of
O(log n/log log n) – is tolerable; see Table 1.

Lemma 1. Our data structure, as described above, takes O(mD log n) worst-
case preprocessing time and uses O(mD) additional space.

Proof. Each edge e = (u1, u2) ∈ E(G) can contribute an entry only to those
sets S(w) where w is an ancestor of either u1 or u2. Therefore, the space needed
for all sets S(·) together is O(mD). They are built as follows: for each edge

e = (u′1, u
′
2) ∈ E(G), u′1 is inserted into all sets S(u2), where u2 is an ancestor

of u′2 (and symmetrically u′2 into S(u1) for each ancestor u1 of u′1). These are
O(mD) insert operations in balanced search trees, each of which takes O(log n).

The additional space for any of the order maintenance data structures [6,7]
is linear in the number of elements they contain, i. e., O(n); preprocessing takes
O(n) worst-case time. The level ancestor structure also can be preprocessed in
linear time and space [12, Theorem 6]. ut

Lemma 2. edgeQuery and edgeReport take O(log n) and O(log n + k) worst-
case time respectively, where k is the number of edges reported.

Proof. edgeQuery(u1, u2) is done by checking whether succ(S(u1),min(u2)) ≤
max(u2). Since the set S(·) is stored as a balanced search tree, the succ opera-
tion and thus the whole edgeQuery take O(log n) worst-case time. Finding the
first edge reported by the edgeReport is essentially an edgeQuery. Since the
leaves of the search trees for the sets S(·) are linked, the remaining edges in
E(u1, u2) are discovered in constant time each. ut

We can implement edgeExpand by an appropriate collection of edgeQuery
operations; in general, however, this is less efficient than Algorithm 1, which is
similar to [3]. Since it simplifies the description, Algorithm 1 treats the expansion
of the first element of an edge only, i. e., edgeExpand((u1, u2), 1); expanding the
second element works analogously.

Algorithm 1: edgeExpand((u1, u2), 1)

input : (u1, u2) ∈ E(I), i. e., an induced edge (u1, u2)
output: all children u′1 of u1 such that (u′1, u2) ∈ E(I)
let v1, . . . , vk be the ordered list of children of u1

R← ∅, t← v1

repeat
s← succ(S(u2), min(t))
if s ≤ max(vk) then

if s > max(t) then set t to the ancestor of s on the level of children(u1)
R← R ∪ {t}
if t 6= vk then advance t to the next child

end
until t = vk or s > max(vk)
return R

Lemma 3. edgeExpand((u1, u2), j) takes O(k log n) worst-case time, where k is
the number of edges reported.

Proof. Without loss of generality, we assume j = 1; the case j = 2 is symmetric.
Let v1, v2, . . . , vk denote the children of u1, in ascending order according to the
linear order of the tree T1, i. e., v1 < v2 < · · · < vk. Note that the children
are stored in this order and do not need to be sorted. We start with v1 and
determine whether it is connected to u2 by calculating s = succ(S(u2),min(v1)).
If s ≤ max(v1), v1 is reported; if max(v1) < s ≤ max(vk), the ancestor s′

of s among the children of u1 is reported by way of the level ancestor data
structure. This procedure is iterated until s > max(vk); see Algorithm 1. Each
succ operation, except the last, yields a new result. Since determining the level
ancestor takes constant time, we get O(k log n) worst-case time. ut

After adding a new edge (u′1, u
′
2) to E(G), we insert u′1 into S(u2) for all

ancestors u2 of u′2 and u′2 into S(u1) for the ancestors u1 of u′1; conversely, for
deleting an edge (u′1, u

′
2) we remove u′1 from S(u2) and u′2 from S(u1). Since

there are at most 2D ancestors, this yields the following lemma:

Lemma 4. newEdge(u1, u2) and deleteEdge(u1, u2) take O(D log n) time each.

For deleting a leaf u, we first delete all incident edges with deleteEdge, which
implicitly updates all affected sets S(·). Next, we update the order maintenance
and the level ancestor data structures and remove the leaf from its tree. At each
ancestor u′ of u we possibly have to update the values min(u′) and max(u′) to
u’s predecessor or successor in the ordered list of tree nodes.

When inserting a new leaf u′ as a child of node u, we first insert u′ right
before max(u) into the order maintenance structure. Then we add u′ to the level
ancestor data structure and insert it into the tree as a child of u. If u was an
inner node before this operation, the values min(u) and max(u) remain correct.
But if u was a leaf, i. e., max(u) = min(u), we have to set min(u) = u′; this may
cause further updates of the min(·) values at ancestors of u. Since insertion and
deletion in the order maintenance as well as the level ancestor data structure
take constant time, this yields the following lemma:

Lemma 5. Deleting a leaf (without any incident edges) and inserting a leaf can
be performed in O(D) time.

2.2 Higher Dimensions

The data structure described so far maintains a dynamic set of pairs (u1, u2) ∈
V (T1) × V (T2), while both trees are dynamic in regard to insertion and dele-
tion of leaves. It provides the retrieval operations edgeQuery, edgeReport, and
edgeExpand. We will give a recursive description for the higher dimensional data
structure with the two-dimensional case as basis.

Suppose that there is already such a data structure for the case d, i. e., for
maintaining hyperedges between nodes of d trees. The (d + 1)-dimensional data
structure stores at each node u1 ∈ V (T1) the set

Sd+1(u1) = {(u′1, u′2, . . . , u′d+1) ∈ E(G) | u′1 ∈ desc(u1)},

i. e., all hyperedges incident with descendants of u1. Disregarding the first el-
ement of the hyperedges, we use a separate d-dimensional data structure for
each set Sd+1(·). In other words, we store the (d + 1)-dimensional hyperedges
in a d-dimensional data structure according to their projections onto the last d
elements.

We can implement edgeQuery(u1, u2, . . . , ud+1) as edgeQuery(u2, . . . , ud+1)
on the d-dimensional data structure stored at u1. An edgeReport query is for-
warded similarly; the edges it returns are already the correct (d+1)-dimensional
result, because the d-dimensional data structure contains the original hyperedges.
The operation edgeExpand((u1, u2, . . . , ud+1), j) for j 6= 1 is implemented as an
edgeExpand((u2, . . . , ud+1), j) on the d-dimensional data structure at the node
u1. For expanding a hyperedge at its first element (j = 1), we build the same
data structure designating some other tree to be T1, for instance T2.

Theorem 1. With O(m(2D)d−1) additional space, our data structure solves
the d-dimensional dynamic tree cross product problem with the worst-case time
bounds shown in Table 1.

Proof. For d = 2, all bounds in Table 1 follow directly from Lemmas 1, 2, 3, 4,
and 5.

For d > 2, an edge (u1, . . . , ud) contributes an entry to the lower dimensional
data structure at each ancestor of u1 and at each ancestor of u2 (assuming
that T2 is the tree designated to be T1 for the second data structure). These
are O(2D) entries; by induction each entry uses O((2D)(d−1)−1) space in the
lower dimensional data structure, which gives a total of O(m(2D)d−1) space.
Inserting or deleting an edge is implemented as one insert or delete operation
in a lower dimensional data structure for each ancestor in the two dimensions,
each of which takes O((2D)(d−1)−1 log n) by induction. All retrieval operations
edgeQuery, edgeReport, and edgeExpand are forwarded to an appropriate lower
dimensional data structure; this recursion ends at some two dimensional data
structure, where the operation is implemented as described in Sect. 2.1. Hence,
we get additional d − 1 steps for the recursion. Inserting and deleting a leaf is
exactly the same as in the two dimensional case. ut

Remark 2. In [3] compressed trees [14] are used to improve the space bound. For
a tree T , an edge (parent(u), u) is light if 2|desc(u)| ≤ |desc(parent(u))| and heavy
otherwise. The compressed tree C(T) evolves from T by contracting all heavy
paths into their respective topmost node. This technique could be employed here
as well, but maintaining C(T) subject to insertion and deletion of leaves into the
original tree T is not straightforward. The problem is that these modifications
can change the status of tree edges at ancestors of the affected node from light to
heavy and vice versa. In the compressed tree this results in adding or removing
an inner node. Especially for a new inner node this is expensive, because we have
to equip the new node with appropriate data structures, e. g., the set S(·). While
reducing the space bound, using compressed trees increases the time bounds of
most operations by a factor of O(log n/(log log n)2). In [3] the trees are stratified
recursively to improve these time bounds again. Unfortunately, the stratification
arguments are faulty [15]; therefore, only the results without stratification are
listed in Table 1.

3 Maintaining Hierarchical Graph Views

A compound graph Γ = (V,Ei, Ea) [4] consists of nodes V , inclusion edges Ei,
and adjacency edges Ea. It is required that the inclusion digraph T = (V,Ei)
is a tree and no adjacency edge connects a node to one of its descendants or
ancestors; see Figs. 2 and 3. A view U is a graph with nodes V (U) ⊆ V such
that ∀u, v ∈ V (U) : desc(u) ∩ desc(v) = ∅, i. e., the nodes of the view are not
related in terms of the inclusion tree. Two nodes u, v ∈ V (U) are connected by
an induced edge if and only if there are nodes u′ ∈ desc(u) and v′ ∈ desc(v) such
that u′ and v′ are connected by an adjacency edge (u′, v′) ∈ Ea; see Fig. 4.

Fig. 2. An example of
a compound graph: the
directed edges form the
inclusion digraph T ; the
undirected ones are the
adjacency edges Ea

Fig. 3. The same com-
pound graph as in Fig. 2,
but T is depicted by the
inclusion of the dashed
rectangles

Fig. 4. The view consist-
ing of the darker shaded
nodes of the compound
graph in Figs. 2 and 3

Given a compound graph Γ and a view U , the graph view maintenance prob-
lem, according to [2], is to efficiently perform the following operations on U :

– expand(v), where v ∈ V (U); replaces node v with its children, i. e., the result
is the view U ′ with nodes V (U ′) = V (U) \ {v} ∪ children(v),

– contract(v), where children(v) ⊆ V (U); contracts all children of v, i. e., the
result is the view U ′ with nodes V (U ′) = V (U) \ children(v) ∪ {v}.

In the new dynamic leaves variant of this problem, the compound graph Γ is
subject to the following modifications:

– newEdge(u, v), where u, v ∈ V , u 6∈ desc(v), and v 6∈ desc(u); adds a new
adjacency edge (u, v) to Γ ,

– deleteEdge(u, v), where (u, v) ∈ Ea; removes adjacency edge (u, v) from Γ ,
– newLeaf(u), where u ∈ V ; adds a new node v to Γ and a new inclusion edge

(u, v), i. e., v becomes a child of u in the inclusion tree,
– deleteLeaf(u), where u is a leaf in the inclusion tree; removes u from G.

Table 2. Results and comparison for the graph view maintenance problem. Let D =
depth(T), s = min{D, log n}, and Opt(U, v) =

P
v′∈children(v) |adjU (v′)|. For expand(v),

U ′ denotes the view after expanding v in U . The bounds labeled with exp are expected,
all others are worst-case.

Approach of [2] Approach of [3] Our data structure

Space O(ms2) O(mD log log n) O(mD)

expand(v) O(Opt(U ′, v)) O(Opt(U ′, v) log log n) O(Opt(U ′, v) log n)
contract(v) O(Opt(U, v)) O(Opt(U, v)) O(Opt(U, v))

newEdge(u, v) Oexp(s2 log n) O(D log log n) O(D log n)
deleteEdge(u, v) Oexp(s2 log n) O(D log log n) O(D log n)
newLeaf(u) n/a n/a O(D)
deleteLeaf(u) n/a n/a O(D)

Besides compound graphs, there are other concepts for extending graphs with
a hierarchical structure [5,16,17,18], among which clustered graphs [5] are very
popular; they consist of a base graph and a tree whose leaves are exactly the
nodes of the base graph. Consequently, clustered graphs have adjacency edges
only between leaves of the inclusion tree, whereas compound graphs allow them
between any pair of tree nodes such that neither is a descendant of the other.
In [2,3] data structures for maintaining views of clustered graphs under expand
and contract operations are described; these are either static or allow insertion
and deletion of adjacency edges. Efficient data structures that additionally sup-
port modifications of the node set were left as an open problem [2]. Providing
insertion and deletion of leaves, we solve this problem partially; see also [19] for
a detailed description on directly applying the ideas of Sect. 2.1 to this problem.
Table 2 summarizes our results and compares them to the other approaches.

The graph view maintenance problem for compound graphs can be reduced
to a two-dimensional tree cross product; see [3, Sect. 5.1]. We set T1 = T2 = T
and interpret an adjacency edge (u, v) ∈ Ea as an edge connecting u ∈ T1 and
v ∈ T2. Clearly, determining whether there is an induced edge between two
nodes u and v becomes an edgeQuery; newEdge and deleteEdge directly map
to corresponding operations for tree cross products. Inserting or deleting leaves
in the inclusion tree engenders a newLeaf or deleteLeaf operation on both T1

and T2.
For expanding a view U at the node v, we use an expandEdge((v, w), 1) for

each edge (v, w) incident to v in the view U ; this determines all the children of
v inheriting the edge (v, w). Contracting a view at the node v is straightforward:
all the children of v are removed and v is connected to all former neighbors of
children of v.

Theorem 2. Let D = depth(T); with O(mD) additional space, our data struc-
ture solves the dynamic leaves variant of the graph view maintenance problem
with the worst-case time bounds shown in Table 2.

Proof. As in [2,3], let Opt(U, v) =
∑

v′∈children(v) |adjU (v′)|, where adjU (v′) are
the edges incident to v′ in the view U . The number of items that have to be added
or removed during expand(v) is bounded by O(Opt(U ′, v)), where U ′ is the view
after expanding v in U . Similarly, the number of items affected by a contract(v)
is bounded by O(Opt(U, v)). By traversing all edges incident to children of v, we
can find the neighbors of v in U ′, where U ′ is the view resulting from contracting
the children of v in U . Hence, contract(v) takes O(Opt(U, v)) time. expand(v)
is bounded by O(Opt(U ′, v) log n), for we have to expand each edge incident to
v in U ; see Algorithm 1. Note that this does not yield the edges between two
children of v: we maintain these edges separately in a list at every node of the
tree. Since each edge is stored exactly once in such a list, namely at the nearest
common ancestor of its end nodes, this uses O(m) additional space, which does
not violate the O(mD) space bound. Clearly, it takes additional O(D) time for
updating these lists, which is possible within the O(D log n) bound for inserting
and deleting edges. All other bounds follow immediately from Theorem 1. ut

4 Conclusion

We have presented an efficient data structure for range searching over tree cross
products, where the trees are dynamic with regard to insertion and deletion
of leaves. As summarized in Table 1, our approach can compete well with the
one it extends [3]. So far, it is the only data structure for tree cross products
where the node set is dynamic. Applying it to graph view maintenance, we have
partially solved the dynamic graph and tree variant, an open problem in [2].
The comparison in Table 2 shows that our solution matches with the more static
ones, but additionally provides insertion and deletion of graph nodes. A data
structure for the dynamic graph and tree variant, i. e., with splitting and merging
of clusters, remains an open problem.

Acknowledgments

I would like to thank Adam Buchsbaum for the enlightening discussions on the
details of [3] and for his valuable comments on drafts of this paper. Furthermore,
I am grateful to Franz Brandenburg, Christian Bachmaier, and Falk Schreiber
for their suggestions.

References

1. Brandenburg, F.J., Forster, M., Pick, A., Raitner, M., Schreiber, F.: Biopath –
exploration and visualization of biochemical pathways. In Mutzel, P., Jünger, M.,
eds.: Graph Drawing Software. Mathematics and Visualization. Springer (2003)
215–236

2. Buchsbaum, A.L., Westbrook, J.R.: Maintaining hierarchical graph views. In: Proc.
11th ACM-SIAM Symposium on Discrete Algorithms (SODA). (2000) 566–575

3. Buchsbaum, A.L., Goodrich, M.T., Westbrook, J.R.: Range searching over tree
cross products. In Paterson, M., ed.: Proc. 8th European Symposium on Algo-
rithms (ESA). Volume 1879 of LNCS. (2000) 120–131

4. Sugiyama, K., Misue, K.: Visualization of structural information: Automatic draw-
ing of compound digraphs. IEEE Transactions on Systems, Man, and Cybernetics
21 (1991) 876–892

5. Feng, Q.W., Cohen, R.F., Eades, P.: How to draw a planar clustered graph. In Du,
D.Z., Li, M., eds.: Proc. 1st Intl. Conference on Computing and Combinatorics
(COCOON). Volume 959 of LNCS. (1995) 21–30

6. Bender, M.A., Richard, C., Demaine, E.D., Farach-Colton, M., Zito, J.: Two simpli-
fied algorithms for maintaining order in a list. In Möhring, R.H., Raman, R., eds.:
Proc. 10th European Symposium on Algorithms (ESA). Volume 2461 of LNCS.
(2002) 152–164

7. Dietz, P.F., Sleator, D.D.: Two algorithms for maintaining order in a list. In: 9th
ACM Symposium on Theory of Computing (STOC). (1987) 365–372

8. Willard, D.E.: Good worst-case algorithms for inserting and deleting records in
dense sequential files. In: Proceedings of the 1986 ACM SIGMOD International
Conference on Management of Data. (1986) 251–260

9. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Mathematical Systems Theory 10 (1977) 99–127

10. Berkman, O., Vishkin, U.: Finding level ancestors in trees. Journal of Computer
and System Sciences 48 (1994) 214–230

11. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. In Ra-
jsbaum, S., ed.: Proc. 5th Latin American Symposium on Theoretical Informatics
(LATIN). Volume 2286 of LNCS. (2002) 508–515

12. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In Montanari, U., Rolim, J.D.P., Welzl, E., eds.: Automata, Languages and
Programming, 27th International Colloquium, ICALP 2000. Volume 1853 of LNCS.
(2000) 73–84

13. Dietz, P.F.: Finding level ancestors in dynamic trees. In Dehne, F.K.H.A., Sack,
J.R., Santoro, N., eds.: Algorithms and Data Structures, 2nd Workshop WADS ’91.
Volume 519 of LNCS. (1991) 32–40

14. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 13 (1984) 338–355

15. Buchsbaum, A.L.: Personal communication
16. Harel, D.: On visual formalisms. Comm. of the ACM 31 (1988) 588–600
17. Lai, W., Eades, P.: A graph model which supports flexible layout functions. Tech-

nical Report 96–15, University of Newcastle (1996)
18. Raitner, M.: HGV: A library for hierarchies, graphs, and views. In Goodrich,

M.T., Kobourov, S.G., eds.: Proc. 10th Intl. Symposium on Graph Drawing (GD).
Volume 1528 of LNCS. (2002) 236–243

19. Raitner, M.: Maintaining hierarchical graph views for dynamic graphs. Technical
Report MIP-0403, Universität Passau (2004)

	Dynamic Tree Cross Products
	Marcus Raitner

